文章目录一、基本原理二、计算过程三、实例 一、基本原理 熵值法是一种客观赋权法,是根据各项指标观测值所提供的信息的大小来确定指标权重。 在信息论中,熵是对不确定性信息的一种度量。信息量月越大,不确定性就越小,熵也就越小;信息量越小,不确定性就越大,熵也越大。 对于某项指标,可以用熵值来判断某个指标的离散程度,其信息熵值越小,指标值的离散程度越大,提供的信息信息量越多,该指标对综合评价的影响(即权
转载
2023-10-20 11:32:22
145阅读
文章目录一、熵值法原理分析(一)选取数据(二)数据标准化处理1、正负相关性处理(1)正相关指标(2)对于负向指标(越小越好的指标)3、计算第
j
转载
2023-09-17 00:41:29
148阅读
熵权法求权重创作背景知识补充熵熵权法求权重过程一、特征缩放归一化标准化注二、求熵三、求权重实战一、特征缩放二、求各特征的熵三、求个特征权重结尾 创作背景最近本菜鸡在帮别人搞个 熵权法求权重 ,给的数据是差不多 5 份打分表,有字段和对应的打分,要我求一下 每个字段对应的权重 ,对于这点小忙我还是很乐意帮的,本片博客就用来记录一下过程。 如果觉得我这篇文章写的好的话,能不能给我 点个赞 ,评论 一
转载
2023-10-04 14:07:23
0阅读
熵权法有啥用?可利用信息熵这个工具,计算出各个指标的权重,为多指标综合评价提供依据。 下面的实战中,最终计算的熵权结果为,C语言课程成绩权重占0.99,剩下的两门课成绩权重几乎为0,很好理解,因为体育和数据库大家的分都普遍偏高,体现不出来设么东西。什么是熵熵权如何计算实战示例一、计算每一列的总和二、每一个数据更新为除以总和后的值,即Pij三、计算ln(Pij)四、得到熵值Hi如果存在0的话,可以通
转载
2024-02-03 10:44:34
52阅读
在很多实际应用中,如何准确地为不同因素分配权重是一个颇具挑战性的任务。熵权法是一种常用的多指标综合评价方法,它能够有效地为评价指标设定权重,并且在许多领域中均有广泛应用。本节将详述如何使用Python实现熵权法求权重的问题解决过程,通过对业务影响分析、错误日志分析、根因分析、解决方案等方面的探讨,帮助大家更深入地了解这一方法。
在涉及数据的决策中,未能有效地为不同指标分配权重可能导致错误判断,从
## Python熵权法求权重的实现指南
熵权法(Entropy Weight Method)是一种常用的多指标决策分析方法。它通过计算各指标的信息熵来客观地评估各个决策指标的重要性权重。本文将详细讲解如何用Python实现熵权法求权重的代码,并通过流程图、饼状图和类图的方式展示相关内容。
### 流程概述
首先,我们来看一下熵权法求权重的基本流程。可以用下表来展示各个步骤:
| 步骤 |
原创
2024-09-26 06:11:53
252阅读
1.熵权法确定客观权重熵学理论最早产生于物理学家对热力学的研究,熵的概念最初描述的是一种单项流动、不可逆转的能量传递过程,随着思想和理论的不断深化和发展,后来逐步形成了热力学熵、统计熵、信息熵三种思路。信息熵方法用来确定权重己经非常广泛地应用于工程技术、社会经济等各领域。由信息熵的基本原理可知,对于一个系统来说,信息和熵分别是其有序程度和无序程度的度量,二者的符号相反、绝对值相等。假设一个系统可能
转载
2024-01-11 08:31:38
41阅读
熵权法是一种客观赋值的方法,即它通过数据所包含的信息量来确定权重,形象的说如果每个人考试都能考100分,那么这个指标对于这些人的评价是毫无意义的,因为没有任何区分度,熵权法就是通过区分度来确定对于特征的权值,从而能够对事物进行综合的评价。一般来说,若某个指标的信息熵指标权重确定方法之熵权法越小,表明指标值得变异程度越大,提供的信息量越多,在综合评价中所能起到的作用也越大,其权重也就越大。相反,某个
转载
2023-12-02 16:13:44
286阅读
## 熵权法求权重 - 一个简单的 Python 实现指南
熵权法是一种用于确定变量权重的有效方法,广泛用于多指标决策分析中。在本文中,我们将讨论如何使用 Python 实现熵权法求权重。以下是整个流程的概述:
### 流程概述
| 步骤 | 描述 |
|------|------|
| 1 | 数据标准化 |
| 2 | 计算各指标的熵值 |
| 3 | 计算各指标的冗余
作者:糖甜甜甜1. 熵权法信息论基本原理解释信息是系统有序性的度量单位,而熵可以度量系统的无序程度;如果某个指标的信息熵越小,该指标提供的信息量越大,指标变异程度(方差)高,因此在综合评价中所起作用理当越大,权重就应该越高。熵权法的基本原理就是根据指标变异性的大小来确定客观权重。一般来说,这个方法相比于AHP专家打分更客观。熵权法确定指标
转载
2024-02-21 13:11:25
53阅读
文章目录1. 多属性决策问题2. 熵(entropy)3. 信息熵4. 熵权法5. 熵权法的实现 基于信息论的熵值法是根据各指标所含信息有序程度的差异性来确定指标权重的客观赋权方法,仅依赖于数据本身的离散程度。 熵用于度量不确定性,指标的离散程度越大(不确定性越大)则熵值越大,表明指标值提供的信息量越多,则该指标的权重也应越大。1. 多属性决策问题熵权法多用于多属性决策问题中求解各个属性的权值。
转载
2023-09-15 15:47:24
745阅读
最近在学习数学建模,在B站发现一个特别不错的课程,讲的很全面,常考的算法都有涉及到:清风数学建模本文将结合熵权法介绍TOPSIS法,并将淡化原理的推导,更侧重于具体应用。TOPSIS法概述TOPSIS法(优劣解距离法)是一种常用的综合评价方法,能充分利用原始数据的信息,其结果能精确地反映各评价方案之间的差距。同时TOPSIS法也可以结合熵权法使用确定各指标所占的权重。基本过程一、统一指标类型常见的
转载
2024-01-31 11:43:39
388阅读
写在前面:个人理解:针对存在多项指标,多个方案的方案评价分析方法,也就是根据已存在的一份数据,判断数据中各个方案的优劣。中心思想是首先确定各项指标的最优理想值(正理想值)和最劣理想值(负理想解),所谓正理想值是一设想的最好值(方案),它的的各个属性值都达到各候选方案中最好的值,而负理想解是另一设想的最坏的值(方案),然后求出各个方案与正理想值和负理想值之间的加权欧氏距离,由此得出各方
转载
2024-07-20 08:39:40
165阅读
一直关注我们的朋友们一定会发现,近期SPSSAU增添了很多新功能。我们精挑细选出6个最常使用的功能,介绍给大家,看看这些新功能你有没有解锁成功呢?01 一键删除无效样本“无效样本”功能中,添加了一键删除无效样本的按钮。筛选出无效样本后,你可以直接选中【删除无效样本】按钮,一键删除无效样本。当然,这样做可能有一些风险,因为删除操作无法恢复。也就是说一定要确保筛除出的样本确实是不符合研究
一、熵权法介绍 熵最先由申农引入信息论,目前已经在工程技术、社会经济等领域得到了非常广泛的应用。 熵权法的基本思路是根据指标变异性的大小来确定客观权重。
转载
2023-05-27 16:29:44
421阅读
已获 深度学习这件小事 授权作者 刘建平PinardzenRRan略有改动最大熵模型(maximum entropy model, MaxEnt)也是很典型的分类算法了,它和逻辑回归类似,都是属于对数线性分类模型。在损失函数优化的过程中,使用了和支持向量机类似的凸优化技术。而对熵的使用,让我们想起了决策树算法中的ID3和C4.5算法。理解了最大熵模型,对逻辑回归,支持向量机以及决策树算法都会加深理
熵是对不确定性的一种度量。信息量越大,不确定性就越小,熵也就越小;信息量越小,不确定性越大,熵也越大。目前已经在工程技术、社会经济等领域得到了非常广泛的应用。 熵权法的基本思路是根据指标变异性的大小来确定客观权重。 参考数据:https://login.sina.com.cn/sso/login.php?useticket=0&returntype=META&service=blo
转载
2024-05-13 12:10:45
233阅读
补充:TOPSIS法(优劣解距离法)介绍及 python3 实现一、熵值法熵值法的主要目的是对指标体系进行赋权熵越大说明系统越混乱,携带的信息越少,权重越小;熵越小说明系统越有序,携带的信息越多,权重越大。熵值法是一种客观赋权方法,借鉴了信息熵思想,它通过计算指标的信息熵,根据指标的相对变化程度对系统整体的影响来决定指标的权重,即根据各个指标标志值的差异程度来进行赋权,从而得出各个指标相应的权重,
转载
2023-10-08 09:15:42
85阅读
信息熵越大,信息量到底是越大还是越小?权重和信息熵的大小到底是正相关还是负相关? 网上有一些相反的说法。 有些说:熵越大,方差越大,包含的信息越多,权重越大。 另一些说:熵越小,不确定性越小,提供的信息越大,权重越大。 今天复盘一下熵权法计算权重的原理,并python实现。 文章目录熵权法计算权重原理信息熵计算熵权法计算熵权悖论的解释Python实现信息熵求权重 熵权法计算权重原理信息熵计算熵是对
转载
2023-08-31 07:47:08
219阅读
经过一些头铁尝试,现在觉得“遥感处理一般用栅格数据,少用矢量”,是挺有道理的提取属性中特定字段之前看的是用栅格计算器【Pick函数】。啥也不是。对提取特定字段根本不好用。 想了解的可以参考:【教程】ArcGIS中栅格计算器常用函数的使用https://www.bilibili.com/video/BV1Dc41187Pd/?p=3&vd_source=849c6a56de214c389a4