高斯分布一维高斯分布在机器学习中占有举足轻重的作用。在 MLE 方法中: $$ \begin{align}& data :\longrightarrowX = (x_1,x_2,\cdots,x_n)^T_{N\times p}\begin{bmatrix}
x_{1}^T \\
x_{2}^T \\
\vdots \\
x_{N}^T \\
转载
2024-05-09 16:39:51
138阅读
1. 曲线拟合工具箱工具箱提供的拟合类型有:Custom Equations:用户自定义的函数类型Exponential:指数逼近,有2种类型, a*exp(b*x) 、 a*exp(b*x) + c*exp(d*x)Fourier:傅立叶逼近,有7种类型,基础型是 a0 + a1*cos(x*w) + b1*sin(x*w)Gaussian:高斯逼近,有8种类型,基础型是 a1*exp(-((x
class sklearn.gaussian_process.GaussianProcessRegressor(
kernel=None,
*,
alpha=1e-10,
optimizer='fmin_l_bfgs_b',
n_restarts_optimizer=0,
normalize_y=False,
copy_X_tra
转载
2024-04-09 01:04:31
168阅读
常见的线性模型: 求解方式有两种,一种是计算均方误差(MSE),使得均方误差最小。 图1 找到梯度为零的点即可。而之前一直比较模糊的最大似然法也比较清楚了。一般线性模型,我们假定误差项是符合高斯分布的,高斯分布的概率密度函数为: 这里x即为原始值, 为估计值,原始描述的是原始点在均值周围的分布,现在改成估计值围绕
转载
2024-04-10 21:52:22
576阅读
介绍摘自李航《统计学习方法》EM算法EM算法是一种迭代算法,1977年由Dempster等人总结提出,用于含有隐变量(hidden variable)的概率模型参数的极大似然估计,或极大后验概率估计。EM算法的每次迭代由两步组成:E步,求期望(expectation);M步,求极大(maximization)。所以这一算法称为期望极大算法(expectation maximizatio
转载
2024-03-18 09:04:51
35阅读
文章目录1、导入数据2、高亮显示名为Amplitude的列,并绘制散点图。3、返回工作簿,选中名为Error的列,然后右键单击并 从上下文菜单中选择“设置为:Y Error”。4、添加误差条5、拟合数据6、选择高斯拟合7、拟合8、现在我们要将y0固定为0并更新结果。单击graph页面左上角的绿色锁,然后选择Change Parameters。9、对话框将重新打开,其中包含上次执行操作时使用的设置
转载
2023-10-23 16:36:01
347阅读
在数据建模时,经常会用到多元高斯分布模型,下面就这个模型的公式并结合它的几何意义,来做一个直观上的讲解。1, 标准高斯函数高斯函数标准型:这个函数描述了变量 x 的一种分布特性,变量x的分布有如下特点:Ⅰ, 均值 = 0Ⅱ, 方差为1Ⅲ, 概率密度和为12, 一元高斯函数一般形式 一元高斯函数一般形式:我们可以令:称这个过程为标准化, 不难理解,,从z->x的过程如下:Ⅰ, 将 x
转载
2024-09-09 05:20:07
44阅读
1、高斯滤波GaussianBlur函数函数原型:void GaussianBlur(InputArray src, OutputArray dst, Size ksize, double sigmaX, double sigmaY=0, int borderType=BORDER_DEFAULT);参数详解如下:src,输入图像,即源图像,填Mat类的对象即可。它可以是单独的任意通道数的图片,但
转载
2024-05-06 19:18:55
718阅读
# Python 二维高斯拟合指南
在数据分析和机器学习中,经常需要拟合数据以寻找最佳模型。二次高斯(Gaussian)分布是一种重要的概率分布,应用广泛。在这篇文章中,我们将学习如何使用 Python 进行二维高斯拟合。以下是整个流程及步骤的概述。
## 流程概述
下面的表格展示了实现“Python 二维高斯拟合”的主要步骤:
| 步骤 | 描述
要解决的问题是:怎么解决这个问题现在我们知道了数据的模型,和数据(x,y)。a,b,c是待求解的参数。那么怎么知道a,b,c是设置的是适合这个数据还是不适合呢?答:计算误差不就可以了么。假设第i个样本数据是,那么现在我们给定a,b,c值下的模型误差为:。由于二次方求导会前面有个系数2,为了求导方便我们习惯性在误差前面乘个。这就是我们经常看到的. 由于不是只有一个样本。我们当然希望整个样本的误差都很
转载
2024-06-11 23:02:09
215阅读
高斯模糊是数字图像模板处理法的一种。其模板是根据二维正态分布(高斯分布)函数计算出来的。 正态分布最早由A.棣莫弗在求二项分布的渐近公式中得到。C.F.高斯在研究测量误差时从另一个角度导出了它。P.S.拉普拉斯和高斯研究了它的性质。故名高斯模糊。高斯滤波实际上是一种低通滤波器,也就是说,低波通过,高波滤
转载
2023-12-07 07:27:54
156阅读
# Python 二维高斯函数拟合:从理论到实践
在数据科学、图像处理和机器学习等领域,二维高斯函数是一种用于描述数据分布和特征的重要工具。本文将介绍如何在Python中进行二维高斯函数拟合,包括相关基础知识、代码示例和可视化。
## 一、二维高斯分布简介
二维高斯分布是一种重要的概率分布,其数学形式如下:
\[
f(x, y) = \frac{1}{2\pi \sigma_x \sigm
原创
2024-10-17 12:35:19
631阅读
一、高斯混合模型定义1、 高斯混合模型就是用高斯概率密度函数(正态分布曲线)精确地量化事物,它是一个将事物分解为若干的基于高斯概率密度函数(正态分布曲线)形成的模型。2、 GMM的直观理解二、求解GMM参数为什么需要用EM算法?总所周知,求解GMM参数使用EM算法。但是为什么呢?这样是必须的吗?首先,类似于其他的模型求解,我们先使用最大似然估计来尝试求解GMM的参数。如下: 可以看出目标函数是和的
转载
2024-03-21 22:00:20
18阅读
本文将简化卡尔曼滤波器。希望你能学习并揭开你在学习卡尔曼过滤器中让你感觉到神秘的东西。要了解卡尔曼滤波器,我们需要了解基础知识。在卡尔曼滤波器中,分布由所谓的高斯分布给出。什么是高斯分布高斯是位置空间上的连续函数,下面的区域总和为1。 高斯的特征在于两个参数,平均值,通常缩写为希腊字母μ(Mu),以及高斯的宽度,通常称为方差σ2(Sigma square)。因此,我们任务是保持μ和σ2
转载
2023-12-10 19:29:07
434阅读
最近有感于部分网友对高斯模糊滤镜的研究,现总结如下。高斯模糊是数字图像模板处理法的一种。其模板是根据二维正态分布(高斯分布)函数计算出来的。 正态分布最早由A.棣莫弗在求二项分布的渐近公式中得到。C.F.高斯在研究测量误差时从另一个角度导出了它。P.S.拉普拉斯和高斯研究了它的性
转载
2023-12-19 22:23:35
367阅读
Sklearn基于这些分布以及这些分布上的概率估计的改进,为我们提供了四个朴素贝叶斯的分类器类含义naive_bayes.BernoulliNB伯努利分布下的朴素贝叶斯naive_bayes.GaussianNB高斯分布下的朴素贝叶斯naive_bayes.MultinomialNB多项式分布下的朴素贝叶斯naive_bayes.ComplementNB补集朴素贝叶斯linear_model.Ba
转载
2023-10-10 17:34:24
133阅读
线性回归中,我们假设Y满足以sita*X为均值的高斯分布。也就是假设P(Y|X)~N(sita*X,yita)。这种假设拟合P(Y|X)的方法我们称为判别法。有这么一种方法,尝试去假设X的分布情况,也就是假设拟合P(X|Y)。这就是生成模型。使用生成模型,得到拟合分布P(X|Y)之后,我们再使用bays规则,求得某个新样本属于某个标签的概率:然后,取其中概率最大的类作为分类结果: 高斯
转载
2023-10-11 08:25:03
177阅读
高斯混合模型(
Gaussian Mixed Model
,
GMM
)也是一种常见的聚类算法,与K
均值算法类似,同样使用了
EM
算法进行迭代计算。高斯混合模型假设每个簇的数据都是符合高斯分布(又叫正态分布)的,当前数据呈现的分布就是各个簇的高斯分布叠加在一起的结果。 图
5.6是一个数据分布的样例,如果
转载
2023-10-20 23:41:24
266阅读
EM(expectationmaximization algorithm)算法是一种迭代算法,1977年由Dempster等人总结提出,
用于含有隐变量的概率模型参数的极大似然估计,或极大后验概率估计。EM算法的每次迭代由两步组成:E步,求期望;M步,求极大,所以这一算法称为期望极大算法,简称EM算法。
一、EM算法的推导
用X=(x1,x2,…,xn)表
转载
2023-12-24 13:34:29
200阅读
一维高斯模型(One-dimensional Gaussian Model)若随机变量X服从一个数学期望为,标准方差为的高斯分布,记为:x~N(,)。则概率密度函数为: 高斯分布的期望值决定了其位置,标准方差决定了其幅度。 高斯分布的概率分布函数高斯分布标准差在概率分布的数据意义高斯分布重要量的性质密度函数关于平均值对称
转载
2023-12-16 01:36:13
167阅读