文章目录1、导入数据2、高亮显示名为Amplitude的列,并绘制散点图。3、返回工作簿,选中名为Error的列,然后右键单击并 从上下文菜单中选择“设置为:Y Error”。4、添加误差条5、拟合数据6、选择高斯拟合7、拟合8、现在我们要将y0固定为0并更新结果。单击graph页面左上角的绿色锁,然后选择Change Parameters。9、对话框将重新打开,其中包含上次执行操作时使用的设置
转载
2023-10-23 16:36:01
347阅读
# Python 二维高斯拟合指南
在数据分析和机器学习中,经常需要拟合数据以寻找最佳模型。二次高斯(Gaussian)分布是一种重要的概率分布,应用广泛。在这篇文章中,我们将学习如何使用 Python 进行二维高斯拟合。以下是整个流程及步骤的概述。
## 流程概述
下面的表格展示了实现“Python 二维高斯拟合”的主要步骤:
| 步骤 | 描述
本文将简化卡尔曼滤波器。希望你能学习并揭开你在学习卡尔曼过滤器中让你感觉到神秘的东西。要了解卡尔曼滤波器,我们需要了解基础知识。在卡尔曼滤波器中,分布由所谓的高斯分布给出。什么是高斯分布高斯是位置空间上的连续函数,下面的区域总和为1。 高斯的特征在于两个参数,平均值,通常缩写为希腊字母μ(Mu),以及高斯的宽度,通常称为方差σ2(Sigma square)。因此,我们任务是保持μ和σ2
转载
2023-12-10 19:29:07
434阅读
最近有感于部分网友对高斯模糊滤镜的研究,现总结如下。高斯模糊是数字图像模板处理法的一种。其模板是根据二维正态分布(高斯分布)函数计算出来的。 正态分布最早由A.棣莫弗在求二项分布的渐近公式中得到。C.F.高斯在研究测量误差时从另一个角度导出了它。P.S.拉普拉斯和高斯研究了它的性
转载
2023-12-19 22:23:35
367阅读
# Python 二维高斯函数拟合:从理论到实践
在数据科学、图像处理和机器学习等领域,二维高斯函数是一种用于描述数据分布和特征的重要工具。本文将介绍如何在Python中进行二维高斯函数拟合,包括相关基础知识、代码示例和可视化。
## 一、二维高斯分布简介
二维高斯分布是一种重要的概率分布,其数学形式如下:
\[
f(x, y) = \frac{1}{2\pi \sigma_x \sigm
原创
2024-10-17 12:35:19
631阅读
# 使用 Python 进行二维高斯拟合散点图
在数据科学和统计学中,高斯拟合是一种常见的数据分析方法,尤其适用于具有正态分布特点的数据。在本节中,我将带你了解如何使用 Python 对散点图进行二维高斯拟合。整个过程如下:
## 流程概述
| 步骤 | 描述 |
|--------------|----------------
1.高斯分布1.1一维高斯分布高斯分布又称为正态分布,是一种广泛应用的概率分布,一维高斯分布比较常见,相关数学定义如下所示。对于不同的均值和标准差,一维高斯分布曲线如下,可以看出标准差越大曲线越平坦,分布越平均;标准差越小,曲线越陡峭,分布越不均匀。1.2二维高斯分布图像一般作为二维数据处理,相应的会用到二维高斯分布。二维高斯分布的数学定义和分布曲线如下图所示。 &nbs
转载
2024-01-10 12:00:47
311阅读
前几天研究了传统的美颜算法,了解到双边滤波(bilateral filtering)。在看懂原理后,为加深理解,抽时间用 pytorch 重新造了个轮子。虽然效率肯定比不上 opencv ,但当个小练习也不错。为了方便复习以及帮助初学者,在此记录。高斯滤波高斯核函数图像领域的高斯滤波器是个二维的矩阵。矩阵中每个元素的值与它与矩阵中心的距离有关,计算公式就是二维高斯函数的公式:
转载
2024-04-08 08:17:36
232阅读
要解决的问题是:怎么解决这个问题现在我们知道了数据的模型,和数据(x,y)。a,b,c是待求解的参数。那么怎么知道a,b,c是设置的是适合这个数据还是不适合呢?答:计算误差不就可以了么。假设第i个样本数据是,那么现在我们给定a,b,c值下的模型误差为:。由于二次方求导会前面有个系数2,为了求导方便我们习惯性在误差前面乘个。这就是我们经常看到的. 由于不是只有一个样本。我们当然希望整个样本的误差都很
转载
2024-06-11 23:02:09
215阅读
本文主要参考周志华《机器学习》的9.4.3章节,对高斯混合聚类的原理做简单介绍,并使用numpy实现GMM。要想很好得理解掌握高斯混合聚类算法,以我的学习经验来看,需要掌握两方面背景知识。多维正态分布EM算法关于上述两方面知识,我只做简单的介绍。多维正态分布 首先,什么是多维正态分布?就是多变量的正态分布。我们所熟知的正态分布往往是一维的,但在现实中,我们所获得的数据往往是多维的。这就需要用到多维
转载
2023-10-07 11:02:54
230阅读
对于初学者,从David G.Lowe的论文到实现,有许多鸿沟,本文帮你跨越。1、SIFT综述尺度不变特征转换(Scale-invariant feature transform或SIFT)是一种电脑视觉的算法用来侦测与描述影像中的局部性特征,它在空间尺度中寻找极值点,并提取出其位置、尺度、旋转不变量,此算法由 David Lowe在1999年所发表,2004年完善总结。其应用范围包含物体
在下面的这段代码中,包含了高斯-勒让德、高斯-切比雪夫、以及拉盖尔和埃尔米特型求积公式,它们分别对应了不同的被积积分型 1.代码%%高斯型求积公式
%%Y是函数表达式,interval是求积区间,n是求积阶数
%%对于求一般形式的非反常积分,可用勒让德型,
%%对于求形如f(x)/sqrt(1-x^2)的非反常积分,可用第一类切比雪夫型,
%对于形如f(x)*sqrt(1-x^2)的非反常积
转载
2023-10-23 13:56:20
378阅读
# Python 二维高斯分布的科普与应用
高斯分布(也称为正态分布)是统计学中最重要的概率分布之一。它在许多领域中发挥着重要的作用,尤其是在机器学习和数据分析中。本文将向你介绍二维高斯分布的概念,并通过 Python 代码示例来演示其生成和可视化过程,同时我们将用流程图和甘特图帮助梳理内容。
## 一、什么是二维高斯分布?
二维高斯分布是指定义在二维空间中的高斯分布。在一个二维高斯分布中,
这篇文章以通俗易懂的语言和方式解释了如何使用高斯函数模糊一张图片。1、一维高斯函数: a表示得到曲线的高度,b是指曲线在x轴的中心,c指width(与半峰全宽有关),图形如下: 2、根据一维高斯函数,可以推导得到二维高斯函数: 在图形上,正态分布是一种钟形曲线,越接近中心,取值越大,越远离中心,取值越小。 计算平均值的时候,我们只需要将"中心点"作为原点,其他点按照其在正态曲线上的
转载
2023-11-27 19:01:10
640阅读
# Python 二维拟合的实现教程
在数据科学和工程领域,二维拟合是一种重要的技术,用于分析和预测变量之间的关系。本文旨在帮助刚入行的小白开发者理解如何在 Python 中实现二维拟合。我们将通过一个简单的流程图和代码示例来详细阐述每一步。
## 一、流程概述
完成二维拟合的过程可以分为以下几个主要步骤:
| 步骤 | 描述 |
|
原创
2024-08-17 05:21:11
103阅读
Python实现高维高斯分布:随机数生成、概率密度函数、累积分布函数一、高斯分布随机数生成二、高斯概率密度函数三、高斯累积分布函数 不过多分类整理了,遇到什么问题,找到了解决方法,就随手写上来吧 也许大多数情况下,课题中我们用到2维的高斯分布就足够了,但可能会碰到要生成高维正态分布的情况。自己写又太麻烦,那么就需要依赖于Python强大且丰富的库了。一、高斯分布随机数生成这应该是最常见的需求了
转载
2023-08-30 17:17:29
827阅读
这篇讨论使用期望最大化算法(Expectation-Maximization)来进行密度估计(density estimation)。 与k-means一样,给定的训练样本是,我们将隐含类别标签用表示。与k-means的硬指定不同,我们首先认为是满足一定的概率分布的,这里我们认为满足多项式分布,,其中,有k个值{1,…,k}可
# 如何实现Python中的二维高斯矩阵
大家好!今天我们要学习如何在Python中实现二维高斯矩阵。二维高斯矩阵广泛应用于图像处理、机器学习和数据分析等领域。接下来,我们将通过几个步骤来实现这个目标。为了更好地理解这一过程,我们将按照下面的流程进行。
## 实现流程
| 步骤 | 描述 |
|------|------|
| 1 | 导入必要的库 |
| 2 | 定义二维高斯函
1.图像模糊 图像的高斯模糊是非常经典的图像卷积例子。本质上,图像模糊就是将(灰度)图像I 和一个高斯核进行卷积操作:,其中是标准差为σ的二维高斯核。高斯模糊通常是其他图像处理操作的一部分,比如图像插值操作、兴趣点计算以及很多其他应用。SciPy 有用来做滤波操作的scipy.ndimage.filters 模块。该模块使用快速一维分离的方式来计算卷积。eg:
转载
2024-09-25 16:27:45
51阅读
《统计学习方法》 李航用于含有隐变量的概率模型参数的极大似然估计,或极大后验概率估计。EM算法的每次迭代由两步组成:E步,求期望(expectation);M步,求极大(maximization).所以这一算法称为期望极大算法(expectation maximization algorithm),简称EM算法。 首先准备一些预备知识,如:二维高斯
转载
2024-04-22 20:27:15
90阅读