常见的方法基本原理及代码实例0.前言:什么时候要聚类?目的-方法概述1.PCA(主成分分析)1.1PCA概念1.2 PCA代码实例2.tSNE2.1tSNE概念2.2 tSNE代码实例3.UMAP3.1UMAP概念3.2 UMAP 代码实例4.其他方法4.1 NMDS4.2 待补充5.参考文献0.前言:什么时候要聚类?目的-方法概述在开始回答这个问题前,我们看一下分析的
# Python UMAP代码实现指南 作为一名经验丰富的开发者,我很高兴能帮助你学习如何使用Python实现UMAP(Uniform Manifold Approximation and Projection)UMAP是一种非线性技术,它能够保留数据的局部结构,非常适合处理高数据。在本文中,我将为你详细介绍实现UMAP的步骤,并提供相应的代码示例。 ## 步骤流程 首先
原创 2024-07-18 05:37:05
859阅读
是机器学习处理高数据的必要手段,也是发掘数据价值的关键路径。它是一种简化复杂数据集以便更容易处理的方法,目标是将高的数据投影或者转换到低维空间,同时尽可能保留原数据中的关键信息。目前常用的技术有主成分分析(PCA)、线性判别分析(LDA)、奇异值分解(SVD)等,可以帮助我们减少计算的复杂性,提高模型的性能和效率。这次我就整理了一部分数据相关的论文以及常用技术的Python示例
Python-深度学习-学习笔记(17):利用t-SNE对数据实现聚类一、引言由于现有的算法还不够智能,所以必须依靠人类的智慧介入分析。所以,需要通过可视化技术把高维空间中的数据以二或三的形式展现出来便于我们观看,展示的效果如何也就直接决定着我们分析的难度。二、的目的其实是将高维度下的特征能够通过某种方式降到低维度下,并且保留不同类的特征所体现出的不同规律,或者可以说是用低维度特征
转载 2023-09-04 14:27:14
177阅读
单细胞RNA之UMAPUMAP首先,UMAP是一种非线性的算法,相对于t-SNE,UMAP算法更加快速 该方法的原理是利用流形学和投影技术,达到目的 首先计算高维空间中的点之间的距离,将它们投影到低维空间,并计算该低维空间中的点之间的距离。然后,它使用随机梯度下降来最小化这些距离之间的差异。比方说,图中两个黑点,若考虑直线距离,那么这两个黑点之间距离很相近 如果放到流形学上,那么这两个
# UMAP对高向量的应用及Python实现 在数据科学和机器学习领域,我们常常需要处理高数据。然而,高数据的处理和可视化往往非常困难。使用技术可以帮助我们减少数据维度,从而更清晰地理解数据。本文将介绍UMAP(Uniform Manifold Approximation and Projection)这一算法,并提供Python示例,帮助大家理解如何应用UMAP进行高数据的
原创 9月前
539阅读
1)autoencoderautoencoder是一种无监督的学习算法,他利用反向传播算法,让目标值等于输入值。如图所示:Autoencoder尝试学习一个 的函数。也就是说autoencoder尝试逼近一个恒等函数,使得输出接近于输入 。当然为了使这个函数有意义,需要加入一些限制条件(比如说限制隐藏神经元的数目),就可以发现一些有意义的结构。Autoencoder可以学习到数据的一些压缩表示。
不仅仅是为了数据可视化。它还可以识别高维空间中的关键结构并将它们保存在低嵌入中来克服“维度诅咒
原创 2024-05-19 21:06:57
652阅读
使用技术可以使用户和开发人员访问嵌入空间。在可视化空间中,可以通过浏览相邻的数据点来进行检索增强的检查。可视化虽然有助于理解数据,但也
原创 2024-05-04 00:25:10
68阅读
在公众号「python风控模型」里回复关键字:学习资料 QQ学习群:1026993837 领学习资料            介绍无论机器学习模型多么强大,它们都无法完全击败您在那些“啊哈!”中获得的感觉。通过丰富的视觉效果探索数据的时刻。但是,在你说“这真的变老了”之前,你可以创建很多直方图、散点图、热图。在那些时刻,
原创 2022-02-04 11:15:46
2734阅读
1点赞
本文包括两部分,使用python实现PCA代码及使用sklearn库实现PCA,不涉及原理。总的来说,对n的数据进行PCA维达到k就是:对原始数据减均值进行归一化处理;求协方差矩阵;求协方差矩阵的特征值和对应的特征向量;选取特征值最大的k个值对应的特征向量;经过预处理后的数据乘以选择的特征向量,获得结果。 实验数据数据data.txt使用[2]中编写的数据,以下是部分数据截
转载 2023-08-10 11:37:47
229阅读
sklearn中的算法1. PCA与SVD sklearn中算法都被包括在模块decomposition中,这个模块本质是一个矩阵分解模块。在过去的十年中,如果要讨论算法进步的先锋,矩阵分解可以说是独树一帜。矩阵分解可以用在,深度学习,聚类分析,数据预处理,低纬度特征学习,推荐系统,大数据分析等领域。在2006年,Netflix曾经举办了一个奖金为100万美元的推荐系统算
转载 2024-01-08 14:23:47
59阅读
数据:定义:特征的数量减少特征选择:原因:1、冗余部分特征相关性高,容易消耗计算机性能2、噪声:部分特征对预测结果有负影响工具:1、Filter(过滤式):VarianceThreshold   (sklearn.feature_selection.VarianceThreshold)2、Embedded(嵌入式):正则化、决策树3、Wrapper(包裹式)方差大小来考虑P
注: 在《SVD(异值分解)小结 》中分享了SVD原理,但其中只是利用了numpy.linalg.svd函数应用了它,并没有提到如何自己编写代码实现它,在这里,我再分享一下如何自已写一个SVD函数。但是这里会利用到SVD的原理,如何大家还不明白它的原理,可以去看看《SVD(异值分解)小结 》,或者自行百度/google。1、SVD算法实现1.1 SVD原理简单回顾有一个\(m \times n\)
转载 2023-08-03 16:23:55
131阅读
深度学习巨头之一的Hinton大神在数据领域有一篇经典论文Visualizing Data using t-SNE。该方法是流形(非线性)数据的经典,从发表至今鲜有新的方法能全面超越。该方法相比PCA等线性方法能有效将数据投影到低维空间并保持严格的分割界面;缺点是计算复杂度大,一般推荐先线性然后再用tSNEpython sklearn有相应的实现。我现在用Tensorflow
算法简介很多算法可以回归也可以分类算法PCA(主成分分析)LDA(线性判别分析)MDS(多维标度法)流形学习Isomap 简介很多算法可以回归也可以分类把连续值变为离散值:1.回归模型可以做分类:可以依据阀值(二元分类或多元分类)来分类2.逻辑回归二元分类,一个阀值。3.连续值进行分箱,实现多元分类4.把离散值变为连续值:插值法(1~2,在离散值之间插入足够密集的值)算法
转载 2023-09-19 07:01:06
165阅读
主成分分析(Principal Component Analysis)Step 1:去相关(Decorrelation)Step 2: (Reduce Dimension)数据是文本时Step 1:去相关(Decorrelation)        旋转数据样本,使它们与坐标轴对齐,并且样本均值变为0。##########################
转载 2023-06-21 21:04:08
216阅读
使用sklearn库初次尝试PCA和T-SNE,原理还不太理解,写错了请一定指出,或者等我自己发现hhhh1. PCA首先读入sklearn里自带的鸢尾花数据库,并调用相关的包,再查看一下这些数据都是些啥:import matplotlib.pyplot as plt from sklearn.decomposition import PCA from sklearn.datasets impor
网上关于各种算法的资料参差不齐,同时大部分不提供源代码。这里有个 GitHub 项目整理了使用 Python 实现了 11 种经典的数据抽取(数据)算法,包括:PCA、LDA、MDS、LLE、TSNE 等,并附有相关资料、展示效果;非常适合机器学习初学者和刚刚入坑数据挖掘的小伙伴。所谓,即用一组个数为 d 的向量 Zi 来代表个数为 D 的向量 Xi 所包含的有用信息,其中 d<
数据概述1.数据概述所谓的数据就是指采用某种映射方法,将原高维空间中的数据点映射到低维度的空间中,可以解决大规模特征下的数据显示问题,使得数据集更易使用,降低后续算法的计算,消除噪声影响并使得结果更易理解。 数据的方法有很多,可从线性或非线性角度对其简单分类。 线性是指通过所得到的低数据能保持高数据点之间的线性关系,主要包括主成分分析(Principal Compone
  • 1
  • 2
  • 3
  • 4
  • 5