1.主成分分析(Principal components analysis,以下简称PCA)是最重要的降维方法之一。在数据压缩消除冗余和数据噪音消除等领域都有广泛的应用。一般我们提到降维最容易想到的算法就是PCA,目标是基于方差提取最有价值的信息,属于无监督问题。但是降维后的数据因为经过多次矩阵的变化我们不知道降维后的数据意义,但是更加注重降维后的数据结果。2.向量的表示及基的变换(基:数据的衡
目录例子LDA降维在前几篇的文章中,大管提到了PCA降维,有小伙伴私信说在实际情况中,效果不太好。那大管今天就和大家聊一聊另一种降维的方法线性判别分析 (LDA)。它目前也是机器学习领域中比较经典而且又热门的一种算法。 还记得在PCA中是怎样做的吗?简单来说,是将数据映射到方差比较大的方向上,最后用数学公式推导出矩阵的前TopN的特征向量,这里的方差可以理解为
特征降维方法包括:Lasso,PCA,小波分析,LDA(Linear Discriminant Analysis线性判别分析),LDA(Latent Dirichlet Allocation潜在狄利克雷分配),奇异值分解SVD,拉普拉斯特征映射,深度学习SparseAutoEncoder,局部线性嵌入LLE,等距映射Isomap,word2vec。1. LASSO通过参数缩减达到降维的目的。LAS
本文包括两部分,使用python实现PCA代码及使用sklearn库实现PCA降维,不涉及原理。总的来说,对n维的数据进行PCA降维达到k维就是:对原始数据减均值进行归一化处理;求协方差矩阵;求协方差矩阵的特征值和对应的特征向量;选取特征值最大的k个值对应的特征向量;经过预处理后的数据乘以选择的特征向量,获得降维结果。 实验数据数据data.txt使用[2]中编写的数据,以下是部分数据截
转载
2023-08-10 11:37:47
206阅读
前面写的PCA,LE,LDA,LLE都是以前就比较熟悉的东西,从这篇开始写的都是之前不熟悉的甚至都不知道名字的算法,然而都还很经典。疫情期间在家里看看原文,学习学习,既是算法总结又是读论文笔记。这篇来写LTSA局部切空间排列。本篇符号尽量与原文保持一致,与前面几篇有所不同。主要思路LTSA(Local Tangent Space Alignment)的基本思路是用样本点的近邻区域的切空间来表示局部
LLE局部线性嵌入,Locally Linear Embedding(LLE)是另一个功能强大的非线性降维(nonlinear dimensional reduction,NLDR)技术。它是一个流形学习技术,并不基于投影。简单地说,LLE工作的方式是:首先衡量每个训练实例与它最近的邻居们(closest neighbors,c.n.)的线性相关程度,然后在这些局部关系可以得到最好地保存的情况下,
单细胞RNA降维之UMAPUMAP首先,UMAP是一种非线性降维的算法,相对于t-SNE,UMAP算法更加快速 该方法的原理是利用流形学和投影技术,达到降维目的 首先计算高维空间中的点之间的距离,将它们投影到低维空间,并计算该低维空间中的点之间的距离。然后,它使用随机梯度下降来最小化这些距离之间的差异。比方说,图中两个黑点,若考虑直线距离,那么这两个黑点之间距离很相近 如果放到流形学上,那么这两个
转载
2023-10-11 22:56:28
260阅读
本周关于降维的学习主要分为五类:PCA、LDA、LLE、tSNE、ISOMAP 来进行学习 首先自己的任务是:tSNE的学习 (一)降维的基本知识点总结 1、降维方法分为线性和非线性降维,非线性降维又分为基于核函数和基于特征值的方法。 (1)线性降维:PCA、ICA、LDA、LFA、LPP (2)非线性降维方法:①基于核函数的方法:KPCA、KICA、KDA ②基于特征值的方法:IS
sklearn中的降维算法1. PCA与SVD sklearn中降维算法都被包括在模块decomposition中,这个模块本质是一个矩阵分解模块。在过去的十年中,如果要讨论算法进步的先锋,矩阵分解可以说是独树一帜。矩阵分解可以用在降维,深度学习,聚类分析,数据预处理,低纬度特征学习,推荐系统,大数据分析等领域。在2006年,Netflix曾经举办了一个奖金为100万美元的推荐系统算
你遇到过特征超过1000个的数据集吗?超过5万个的呢?我遇到过。降维是一个非常具有挑战性的任务,尤其是当你不知道该从哪里开始的时候。拥有这么多变量既是一个恩惠——数据量越大,分析结果越可信;也是一种诅咒——你真的会感到一片茫然,无从下手。面对这么多特征,在微观层面分析每个变量显然不可行,因为这至少要几天甚至几个月,而这背后的时间成本是难以估计的。为此,我们需要一种更好的方法来处理高维数据,比如本文
转载
2023-08-22 20:10:14
233阅读
数据降维:定义:特征的数量减少特征选择:原因:1、冗余部分特征相关性高,容易消耗计算机性能2、噪声:部分特征对预测结果有负影响工具:1、Filter(过滤式):VarianceThreshold (sklearn.feature_selection.VarianceThreshold)2、Embedded(嵌入式):正则化、决策树3、Wrapper(包裹式)方差大小来考虑P
转载
2023-08-31 15:36:19
96阅读
Python中T-SNE实现降维 from sklearn.manifold import TSNE
from sklearn.datasets import load_iris
from sklearn.decomposition import PCA
import matplotlib.pyplot as plt
iris = load_iris()
X_tsne = TSNE(
转载
2023-05-30 19:50:27
92阅读
1 基于特征选择的降维特征选择是在数据建模过程最常用的特征降维手段,简单粗暴,即映射函数直接将不重要的特征删除,不过这样会造成特征信息的丢失,不利于模型的精度。由于数据的Fenix以抓住主要影响因素为主,变量越少越有利于分析,因此特征选择常用于统计分析模型中。1.1特征选择的方法过滤法(Filter):按照发散性或者相关性对各个特征进行评分,通过设定阈值或者待选择阈值的个数来选择特征。包装法(Wr
作者: 郗晓琴 熊泽伟今天这篇文章是介绍目前前沿好用的一种降维可视化算法:t-SNE,并且附带python的实际例子加以讲解。t-SNE是什么技术我们直接开门见山好了,第一件事:什么是t-SNE?t-SNE的全称叫做t分布式随机邻居嵌入(t-SNE)。该算法是一种非监督的非线性技术,主要用于数据探索和可视化高维数据。简而言之,t-SNE为我们提供了数据
转载
2023-08-09 19:41:45
111阅读
数据降维概述1.数据降维概述所谓的数据降维就是指采用某种映射方法,将原高维空间中的数据点映射到低维度的空间中,可以解决大规模特征下的数据显示问题,使得数据集更易使用,降低后续算法的计算,消除噪声影响并使得结果更易理解。 数据降维的方法有很多,可从线性或非线性角度对其简单分类。 线性降维是指通过降维所得到的低维数据能保持高维数据点之间的线性关系,主要包括主成分分析(Principal Compone
一、Tensor的降维——torch.squeeze()函数1.tensor的维度小编对于张量的理解一直很模糊,今天用Excel来帮助大家理解,希望对大家有所帮助。首先,张量是多维数组,这里不多赘述,可以去查阅相关资料。今天重点介绍的是张量的维度。张量有一维、二维、三维、四维等。一维:正如我们的Eecel表里的3个数字就组成一维数据。你也可以把它理解为一行数据,即由单个元素组成的一组数据。&nbs
转载
2023-08-25 07:24:24
191阅读
网上关于各种降维算法的资料参差不齐,同时大部分不提供源代码。这里有个 GitHub 项目整理了使用 Python 实现了 11 种经典的数据抽取(数据降维)算法,包括:PCA、LDA、MDS、LLE、TSNE 等,并附有相关资料、展示效果;非常适合机器学习初学者和刚刚入坑数据挖掘的小伙伴。所谓降维,即用一组个数为 d 的向量 Zi 来代表个数为 D 的向量 Xi 所包含的有用信息,其中 d<
转载
2023-08-15 17:18:52
103阅读
降维在很多机器学习问题中,训练集中的每条数据经常伴随着上千、甚至上万个特征。要处理这所有的特征的话,不仅会让训练非常缓慢,还会极大增加搜寻良好解决方案的困难。这个问题就是我们常说的维度灾难。不过值得庆幸的是,在实际问题中,经常可以极大地减少特征的数目,将棘手的问题转变为容易处理的问题。例如,以MNIST图片数据集为例:在图片边框附近的像素点基本都是白色,所以我们完全可以从训练集中剔除掉这些像素点,
深度学习巨头之一的Hinton大神在数据降维领域有一篇经典论文Visualizing Data using t-SNE。该方法是流形(非线性)数据降维的经典,从发表至今鲜有新的降维方法能全面超越。该方法相比PCA等线性方法能有效将数据投影到低维空间并保持严格的分割界面;缺点是计算复杂度大,一般推荐先线性降维然后再用tSNE降维。python sklearn有相应的实现。我现在用Tensorflow
降维算法简介很多算法可以回归也可以分类降维算法PCA降维(主成分分析)LDA降维(线性判别分析)MDS降维(多维标度法)流形学习Isomap 简介很多算法可以回归也可以分类把连续值变为离散值:1.回归模型可以做分类:可以依据阀值(二元分类或多元分类)来分类2.逻辑回归二元分类,一个阀值。3.连续值进行分箱,实现多元分类4.把离散值变为连续值:插值法(1~2,在离散值之间插入足够密集的值)降维算法
转载
2023-09-19 07:01:06
156阅读