原文出处:http://mp.weixin.qq.com/s?__biz=MjM5MzM5NDAzMg==&mid=200729339&idx=1&sn=e22ccad6792621cf74d9baffa6c07097&3rd=MzA3MDU4NTYzMw==&scene=6#rd 1 基础知识 1. 1 样本整理 文本分类属于有监督的学习,所以需要整理样本
转载 精选 2014-10-18 11:05:30
1393阅读
1点赞
1评论
以天气分类为例,我们的目的是运用支持向量机SVM(libsvm)来训练出一个天气分类的模型,这个模型可以将新来的语料分成天气类和非天气类两个大类,即正类与负类,具体的流程如下:1.爬取语料数据 首先,第一步要做的就是网上爬取天气相关的语料,可以运用Python爬虫爬取百度相关搜索的词条,进行多轮爬取,我们将跟天气相关的语料称为正语料,与天气无关的语料称为负语料,正语料和负语料分开爬取,一般来说,训
转载 2024-01-30 00:10:12
95阅读
在学界一般认为,《红楼梦》后 40 回并非曹雪芹所著。利用机器学习相关算法来进行判断原理 每个作者写作都有自己的用词习惯和风格,即使是故意模仿也会留下很多痕迹。 在文言文中,文言虚词分布均匀,书中每个回目都会出现很多文言虚词,差别在于出现频率不同,我们把文言虚词的出现频率作为特征。 不只文言虚词,还有其他的词在所有回目中出现频率很多。比如对第 80 回进行词频统计,得到了 172的 142我 70
预备知识:1)svmsvm(support vector machine)即支持向量机,是一种机器学习算法,2000年左右开始火爆,被认为是(2005年论文上写的)目前分类算法中最好的二个之一(还有一个是boost方法,即使用多个 低分辨率的分类器线性组合成一个高分辨率的模式);根据它的原理,个人认为它和人工神经网络的计算公式本质一样,虽然它们的类切分方式不一样。至少svm是完全的基于
最近一段时间在写关于情感分析方面的论文,用到了SVM作为分类算法进行情感分类。 我选用了著名的SVM开源工具包libSVM,果然效果不错。由于LibSVM的输入语料格式有一定的要求。故有时候怎样把我们的训练语料转换成LibSVM的输入语料格式,是一个比较麻烦的事情。 在做这个的过程中我也遇到了挺多麻烦的事情的,比如刚开始的时候,我把同一类的样例放在了一个,出现的结果是libSVM无法进行准确分
原创 2010-03-06 19:37:00
10000+阅读
5点赞
6评论
众所周知,卷积神经网络(CNN)在计算机视觉领域取得了极大的进展,但是除此之外CNN也逐渐在自然语言处理(NLP)领域攻城略地。本文主要以文本分类为例,介绍卷积神经网络在NLP领域的一个基本使用方法,由于本人是初学者,而且为了避免东施效颦,所以下面的理论介绍更多采用非数学化且较为通俗的方式解释。0.文本分类所谓文本分类,就是使用计算机将一篇文本分为a类或者b类,属于分类问题的一种,同时也是NLP中
文章目录一、简介二、模型结构1.Word Representation Learning2.Text Representation Learning3. 代码实现4. 参考 文章:recurrent convolutional neural networks for text classification 文章链接:http://www.aaai.org/ocs/index.php/AAAI/A
LSTM文本生成 一、概述1.主题:整个文本将基于《安娜卡列妮娜》这本书的英文文本作为LSTM模型的训练数据,输入为单个字符,通过学习整个英文文档的字符(包括字母和标点符号等)来进行文本生成。2.单词层级和字符层级的区别:1、基于字符的语言模型的好处在于处理任何单词,标点和其他文档结构时仅需要很小的词汇量,而且更加灵活。 2、语言模型的目标是根据之前的
还没入门,就因为工作需要,要用CNN实现文本分类,用了github上现成的cnn-text-classification-tf代码,边读边学吧。 源码为四个PY文件,分别是text_cnn.py:网络结构设计train.py:网络训练eval.py:预测&评估data_helpers.py:数据预处理下面分别进行注释。1 import tensorflow as tf 2 im
简介主要内容包括如何将文本处理为Tensorflow LSTM的输入如何定义LSTM用训练好的LSTM进行文本分类代码导入相关库#coding=utf-8 import tensorflow as tf from tensorflow.contrib import learn import numpy as np from tensorflow.python.ops.rnn import stat
目录代码分解utilstrain_evalmodels.TextCNNmain在GPU下的运行结果代码分解代码包括四个部分,分别是:工具类:utils训练及测试代码:train_eval模型:models.TextCNN主函数:main在notebook中依次运行前三个部分,最后执行main就可以开始训练了colab链接:https://colab.research.google.com/driv
转载 2023-12-26 12:46:21
187阅读
LSTM文本分类模型本文主要固定一个文本分类的流程。分为三个部分:数据处理。对分类文本数据集做简单的预处理。模型数据准备。处理上一步的结果,得到模型的输入样本。模型搭建和训练流程。模型使用BiLSTM;训练过程可以使用cpu或者GPU。traniner.py的use_cuda参数来控制。程序架构如下:主要包括一个原始的分类文件(头条新闻)。一个预处理脚本prepare_data.py一个数据处理脚
# 文本分析项目实战 # 背景:根据新闻文本中的内容,进行文本预处理,建模操作,从而可以自动将新闻划分到最 # 可能的类别中,节省人力资源。 # 具体实现内容: # 能够对文本数据进行预处理【文本清洗(正则),分词(jieba),去除停用词,文本向量化(TfidfVectorizer)】 # 能够通过统计词频,生成词云图。【描述性统计分析】 chain,counter。 哪个词出
还是同前一篇作为学习入门。1. KNN算法描述:step1: 文本向量化表示,计算特征词的TF-IDF值step2: 新文本到达后,根据特征词确定文本的向量step3 : 在训练文本集中选出与新文本向量最相近的k个文本向量,相似度度量采用“余弦相似度”,根据实验测试的结果调整k值,此次选择20step4: 在新文本的k个邻居中,依次计算每类的权重,step5: 比较类的权重,将新文本放到权重最大的
转载 2023-07-27 16:24:30
75阅读
文本分类是自然语言处理的一个重要任务,它可以将文本按照其内容或主题进行分类。在Python中,有许多库可以帮助我们实现文本分类,例如scikit-learn和nltk等。下面,我将为你详细介绍如何使用Python实现文本分类。 ## 文本分类的流程 首先,让我们来看一下文本分类的整体流程。下面的表格展示了文本分类的步骤及每个步骤需要做的事情。 | 步骤 | 任务 | | ---- | ---
原创 2023-08-27 11:54:50
127阅读
一、数据集介绍本项目的数据集来自于DataFountain——疫情期间网民情绪识别。即给定微博ID和微博内容,设计算法对微博内容进行情绪识别,判断微博内容是积极的、消极的还是中性的。链接:https://www.datafountain.cn/competitions/423/datasets 二、TextCNN模型介绍将卷积神经网络CNN应用到文本分类任务,利用多个不同size的ker
转载 2024-09-07 17:32:02
0阅读
直接从特征提取,跳到了BoostSVM,是因为自己一直在写程序,分析垃圾文本,和思考文
原创 2022-10-18 13:45:18
166阅读
我们在之前的一篇回答中曾详细讲解了机器学习中的多标签分类问题,也介绍了解决多标签分类问题的一些方法:简单说,多标签分类就是向每个样本分配一组目标标签,我们可以将这个问题看作预测某个数据点的互不排斥的多个属性,比如7-11,你既能将它归类为路边便利店,也能归类为路边小吃店。而在多标签分类问题中,多标签文本分类在实际中有着广泛应用,比如在购物网站上为商品分类标签,或者将电影分类到一个或多个流派等等。今
前言:项目基于CNN模型,对输入问题进行训练,让机器可以识别出问题的类别从而通过相应类别查询所要寻找的数据有关于数据部分的链接:https://pan.baidu.com/s/16ZR6LVVLP-_4mXLJG_aD4g?pwd=1111你需要把它放在所建立的py文件通文件夹下,原因如是 注:有关浅谈和一些题外话仅仅作为学习过程中的测试用,代码中不加入无关紧要0.导入包import o
摘要:本文主要讲解CNN实现中文文本分类的过程,并与贝叶斯、决策树、逻辑回归、随机森林、KNN、SVM分类算法进行对比。本文分享自华为云社区《[Python人工智能] 二十一.Word2Vec+CNN中文文本分类详解及与机器学习算法对比》,作者:eastmount。一.文本分类文本分类旨在对文本集按照一定的分类体系或标准进行自动分类标记,属于一种基于分类体系的自动分类文本分类最早可以追溯到上世
  • 1
  • 2
  • 3
  • 4
  • 5