● 请简单介绍一下你了解的Java领域中的Web Service框架都有哪些? 考察点:框架参考回答:Java领域的Web Service框架很多,包括Axis2(Axis的升级版本)、Jersey(RESTful的Web Service框架)、CXF(XFire的延续版本)、Hessian、Turmeric、JBoss SOA等,其中绝大多数都是开源框架。 ● 请简述一下Mybatis和Hi
在做自然语言处理的过程中,我们经常会遇到需要找出相似语句的场景,或者找出句子的近似表达,这时候我们就需要把类似的句子归到一起,这里面就涉及到句子相似度计算的问题,那么本节就来了解一下怎么样来用 Python 实现句子相似度的计算。基本方法句子相似度计算我们一共归类了以下几种方法:编辑距离计算杰卡德系数计算TF 计算TFIDF 计算Word2Vec 计算下面我们来一一了解一下这几种算法的原理和 Py
转载
2024-01-22 13:27:38
133阅读
全套代码,不多解释,即插即用~英文句子预处理模块# 英文句子处理模块
from nltk.corpus import stopwords as pw
import sys
import re
cacheStopWords=pw.words("english")
def English_processing(sentence):
if sentence:
sentence
转载
2023-05-31 19:38:28
296阅读
# 句子相似度 Java
## 引言
句子相似度是自然语言处理中的一个重要问题,它用于衡量两个句子之间的语义相似程度。在实际应用中,句子相似度常被用于文本匹配、信息检索、机器翻译等领域。本文将介绍如何使用 Java 实现句子相似度计算,并提供代码示例。
## 句子相似度计算方法
句子相似度计算方法有很多种,其中常用的方法包括基于词袋模型、基于词向量模型和基于深度学习模型。本文将介绍一种常用的基
原创
2023-08-09 03:02:00
131阅读
在nlp任务中,经常会遇到求解相似语句判断的场景,这就涉及到了句子的相似性判断。目前常用的两种方法是基于word-level级别和sentence-level级别。一、Word-level的思想是通过对句子进行分词,分别计算两个比较句子中所含词汇的相似度。主要包含两个核心问题,一个是词的相似度计算问题,另一个是对多个词进行相似度加权融合问题1.1 基于word的相似度计算问题&nbs
转载
2024-01-25 15:49:32
137阅读
1、使用vsm向量空间模型2、将词使用word2vec将词转换成向量,计算两个句子向量分布距离,使用kl散度
原创
2023-07-10 20:40:26
70阅读
PaddleNLP《基于深度学习的自然语言处理》打卡营作业2-- 必修|文本语义相似度计算《基于深度学习的自然语言处理》课程《基于深度学习的自然语言处理》地址:https://aistudio.baidu.com/aistudio/education/group/info/24177完成预测环节预训练模型的调用代码,并跑通整个项目,成功提交千言文本相似度竞赛,按要求截图,提交作业即可。tips:预
转载
2024-03-14 12:21:37
86阅读
环境设置:SentenceTransformertransformersSentenceTransformers Documentation — Sentence-Transformers documentation (sbert.net)Sentence Transformer是一个Python框架,用于句子、文本和图像嵌入Embedding。这个框架计算超过100种语言的句子或文本嵌入。然后,
转载
2024-02-10 06:53:52
411阅读
转载
2012-11-23 16:26:00
401阅读
2评论
# 用 Python 实现句子相似度搜索
在自然语言处理(NLP)中,句子相似度搜索是一个非常重要的任务。它通常用于文档推荐、问答系统等应用。本文将详细讲解如何使用 Python 找到句子的相似度,其中我们将使用一些常见的库,比如 `nltk` 和 `sklearn` 以及 `sentence-transformers`。我们将分步进行,从准备数据到计算句子相似度。
## 流程概述
以下是实
原创
2024-08-19 08:01:34
76阅读
推荐算法准确度度量公式:其中,R(u)表示对用户推荐的N个物品,T(u)表示用户u在测试集上喜欢的物品集合。集合相似度度量公式(N维向量的距离度量公式):Jaccard公式:其中,N(u)表示用户u有过正反馈的物品集合。余弦相似度公式:UserCF公式:其中,S(u,k)表示和用户u兴趣最接近的K个用户集合;N(i)表示对物品i有过正反馈的用户集合;w(u,v)表示用户u和用户v的兴趣相似度;r(
转载
2024-07-25 07:36:10
29阅读
因为最近在做短文本匹配的项目,所以,简单的记个笔记。短文本匹配,即计算两个短文本的相似度。从广义分,可以分为无监督方式,有监督方式,有监督和无监督结合方式。具体实现,可以使用两个算法库,分别是MatchZoo和text_matching,在github上以上两个算法都开源了。1.无监督方式。通过模型训练语料得到词向量,如word2vec,glove等模型。然后通过对文本进行分词,通过look up
转载
2023-12-15 10:21:16
197阅读
一、bm25的应用和基础医学领域,BM25算法的应用,文档分类,相似度识别以及疾病、手术等实体的相似度匹配。文档的处理相对简单,可以直接调用相关算法包,实体单词的相似度匹配需要对文本做相关的处理。对比研究,在文档中,表示特征的主要是单词,而在实体名词(疾病、手术、药品名称)中,表示特征的是字或者由n-gram切分的元素,当用字表示特征时,文本的语义会丢失,所以我建议用字和n-gram(n>=
转载
2023-12-12 22:27:56
64阅读
在我们日常开发过程中有时遇到需要对标题内容进行关键字检索匹配排序,一般我们常用"like"直接做了模糊查询,但是这种模糊查询没有做到关键词匹配度查询。下面我整理两种我在开发中用到两种取巧的做法:做法一:利用数据库like关键词进行第一步匹配出包含关键词的数据,然后利用关键词在所在语句长度和关键词长度做对比,得到比重越大的说明关键字在语句中越重要,这里没有考虑一句话里面包含关键词多次的情况,sele
转载
2024-04-26 08:56:39
71阅读
大数据系统与大规模数据分析学习笔记(相似度计算) 寻找相似项过程:1. Jaccard相似度 定义 Jaccard 相似度计算公式:J(A,B)=(A交B)/(A并B)2. shingling将文档用短字符集合来表示2.1 k-shinglecharacter 级别:包括空格word 级别:不包括空格和逗号句号符2.2 k 值大小的选择如果文档由邮件组成,那么选择 k = 5 比较合适。如果文档比
转载
2024-04-12 12:26:58
160阅读
这里主要面向初学者介绍句子相似度目前主流的研究方向。从词到句子,这是目前中文相似度计算的主要思想。而由这个-思想引申出来的算法却非常多,这里面向初学者介绍比较容易实现的方法。这里要介绍的是二分法计算句子相似度。这个算法实现简单,思路清晰由此出现的技术分类变化万千,主要的变化是分组,也成为分集合。二分法的思想是:集合一和集合二是两个词的集合,集合一的每一个词与集合二的每一个词求相似度,找出最大的一个
转载
2023-11-10 16:56:25
152阅读
文章目录1.基于统计的方法1.1.编辑距离计算1.2.杰卡德系数计算1.3.TF 计算1.4.TFIDF 计算1.5.BM252.基于深度学习的方法2.1.Word2Vec 计算6.参考文献 如下在师兄的博文基础上修改: 静觅 » 自然语言处理中句子相似度计算的几种方法 1.基于统计的方法1.1.编辑距离计算编辑距离,英文叫做 Edit Distance,又称 Levenshtein 距离,是
转载
2024-03-14 11:52:27
219阅读
目录1、基于Word2Vec的余弦相似度2、TextRank算法中的句子相似性3、莱文斯坦距离(编辑距离)4、莱文斯坦比5、汉明距离6、Jaro距离(Jaro Distance)7、Jaro-Winkler距离(Jaro-Winkler Distance)8、基于Doc2Vec的句子相似度计算1、基于Word2Vec的余弦相似度首先对句子分词,使用Gensim的Word2Vec训练词向量
转载
2023-08-31 18:21:16
229阅读
本文将介绍一下内容:NLP中常见的词袋模型(Bag of Words)如何构造句向量(Sentence Embedding)利用词袋模型来计算句子间的余弦相似度(余弦相似度cosine similarity)使用编辑距离算法计算句子的相似度(编辑距离相似度)一,什么是词袋模型1,分句和分词通常,NLP无法一下子处理完整的段落或句子,因此,第一步往往是分句和分词。这里只有句子,因此我们只需要分词即可
转载
2023-11-07 00:48:24
115阅读
0 引言问题背景:大量的工程实践表明,点云匹配关系的求解是一个非常复杂而困难的问题。其核心点在于找到一种映射方法,该方法将某个点映射到一个有限m维的特征向量,
A = {a1,a2,a3,…,am}. 基于某种距离度量的方法,比如欧式距离法,计算A与任意某B的距离值距离值为distance = |A-B|.若A与B的距离值与两点在几何及
拓扑上的相似性呈正相关,该相关系数越接近1(或者-1,效果相
转载
2024-04-29 18:06:18
168阅读