# HBaseSpark版本依赖对照及示例代码 HBaseSpark是两种广泛使用的大数据处理技术。HBase是一个分布式、可扩展的NoSQL数据库,而Spark则是一种快速、通用的大数据处理引擎。为了优化它们之间的协同功能,用户需要了解它们的版本依赖关系。本文将阐述HBaseSpark的版本依赖对照,并提供相应的代码示例,帮助开发者更好地理解如何在项目中结合这两者。 ## HBase
原创 7月前
175阅读
RDD依赖关系一. RDD血缘关系二. RDD依赖关系三. RDD窄依赖四. RDD宽依赖五. RDD阶段划分六. RDD任务划分 ——> RDD依赖于RDD1,RDD2依赖于RDD1…相邻的两个RDD的关系称之为依赖关系多个连续的RDD依赖关系,称之为血缘关系 每个RDD不会保存数据,但每个RDD会保存血缘关系一. RDD血缘关系RDD只支持粗粒度转换,即在大量记录上执行的单个操作。将创
转载 2023-09-26 17:01:58
75阅读
问题导读: 1.如何初始化sparkContext? 2.如何设置查询条件? 3.如何获得hbase查询结果Result? 由于spark提供的hbaseTest是scala版本,并没有提供java版。我将scala版本改为java版本,并根据数据做了些计算操作。 程序目的:查询出hbase满足条件的用户,统计各个等级个数。 代码如下,西面使用的hbase是0.94注释已经写详细: pack
转载 2023-08-13 23:28:31
73阅读
HBase是一个分布式、可扩展、支持海量数据存储的NoSQL数据库。底层物理存储是以Key-Value的数据格式存储的,HBase中的所有数据文件都存储在Hadoop HDFS文件系统上。一、主要组件     HBase详细架构图解注意:HBase依赖ZooKeeper和HDFS的,需要启动ZooKeeper和HDFS。  1. Client&n
转载 2023-09-01 10:59:49
72阅读
RDD 依赖关系和血缘关系 说明: 调用 toDebugString 方法可以查看 RDD 保存的血缘关系RDD 窄依赖 新的 RDD 的一个分区的数据依赖于旧的 RDD 一个分区的数据,这个依赖称之为 OneToOne 依赖(窄依赖) 窄依赖表示每一个父(上游)RDD 的 Partition 最多被子(下游)RDD 的一个 Partition 使用,窄依赖我们形象的比喻为独生子女RDD 宽依赖
转载 2023-08-26 22:26:17
166阅读
Spark是一个小巧玲珑的项目,由Berkeley大学的Matei为主的小团队所开发。使用的语言是Scala,项目的core部分的代码只有63个Scala文件,充分体现了精简之美。Spark依赖(1)MapReduce模型作为一个分布式计算框架,Spark采用了MapReduce模型。在它身上,Google的MapReduce和Hadoop的痕迹很重,很明显,它并非一个大的创新,而是微创新。在基
概述本文讲述了RDD依赖的原理,并对其实现进行了分析。Dependency的基本概念Dependency表示一个或两个RDD的依赖关系。依赖(Dependency)类是用于对两个或多个RDD之间的依赖关系建模的基础(抽象)类。Dependency有一个方法rdd来访问依赖的RDD。当你使用transformation函数来构建RDD的血缘(lineage)时,Dependency代表了血缘图(li
转载 2023-09-03 10:58:29
49阅读
HBase概念:HBase – Hadoop Database,是一个高可靠性、高性能、面向列、可伸缩的分布式存储系统,利用HBase技术可在廉价PC Server上搭建起大规模结构化存储集群。它经常被描述为一种稀疏的,分布式的,持久花的,多维有序映射, 基于行键rowkey,列簇column family和时间戳timestemp.HBase生态环境HBase时Google Bigtable的开
转载 2023-07-21 15:47:56
47阅读
spark读取hbase数据 0.我们有这样一个表,表名为Student1.在Hbase中创建一个表表明为student,列族为info2.插入数据我们这里采用put来插入数据格式如下   put  ‘表命’,‘行键’,‘列族:列’,‘值’  我们知道Hbase 四个键确定一个值,一般查询的时候我们需要提供  表
转载 2023-07-12 10:59:21
41阅读
摘要:hadoop yarn调度pyspark在使用过程中,使用场景不一致,需要安装一些三方依赖,尤其在机器学习算法方面依赖许多科学包如numpy、pandas 、matlib等等,安装这些依赖是一个非常痛苦的过程,本章结合ti产品在私有化过程中依赖包及版本升级等为题进行简单介绍。Spark on yarn分为client模式和cluster模式,在client模式下driver 会运行在提交节点
1、宽依赖和窄依赖1、区别 窄依赖: 父rdd的一个分区只对应子rdd一个分区。 窄依赖允许在一个集群节点上以流水线的方式(pipeline)计算所有父分区。 算子:map、union、map join和broadcast join。 宽依赖:父rdd的一个分区只对应子rdd多个分区。 宽依赖需要首先计算好所有父分区数据,然后在节点之间进行Shuffle。 算子
转载 2023-07-26 19:31:41
43阅读
依赖与窄依赖依赖是指父RDD的每个分区只被子RDD的一个分区所使用,子RDD一般对应父RDD的一个或者多个分区。(与数据规模无关)不会产生shuffle。下面的join也是窄依赖,虽然有两个父RDD,但是两个 RDD中每个分区都被一个子RDD的分区使用,即使父RDD的分区里面的内容并没有让子RDD的一个分区使用。宽依赖指父RDD的多个分区可能被子RDD的一个分区所使用,子RDD分区通常对应所有
转载 2023-12-12 20:30:51
42阅读
Spark中,RDD(弹性分布式数据集)存在依赖关系,宽依赖和窄依赖。宽依赖和窄依赖的区别是RDD之间是否存在shuffle操作。窄依赖依赖指父RDD的每一个分区最多被一个子RDD的分区所用,即一个父RDD对应一个子RDD或多个父RDD对应一个子RDDmap,filter,union属于窄依赖依赖对于流水化作业有优化效果每一个RDD算子都是一个fork/join操作,join会写入磁盘,流水
转载 2023-10-05 11:02:10
101阅读
HiveSparkFlink语法优化 1. 列裁剪(只选择需要的列) 2. 行裁剪(只选取需要的行) 3. group by set hive.map.aggr = true set hive.groupby.mapaggr.checkinterval = 10000 set hive.groupby.skewindata = true 生成两个MR查询计划,部分聚合 -> 全局聚合 4.
转载 2023-08-30 13:40:36
63阅读
读写方式其实个人最近访问hbase 都是通过shc df/sql 来访问的df的读写方式,足够覆盖90%的场景,但该方案有一个前提是,明确的知道hbase 的列族和列信息,新项目都会规范这一点,可以使用但有些历史包袱的项目,列族是明确的,但是列族里的列信息是不明确的,正好要做一个旧项目列的标准化每行数据列信息都不一样,部分多列,部分少列,必须读一条,解析一条,因此df之类的方案不适用也借此,整理下
转载 2023-07-12 10:54:22
116阅读
前言在之前的大数据学习系列之七 ----- Hadoop+Spark+Zookeeper+HBase+Hive集群搭建 中介绍了集群的环境搭建,但是在使用hive进行数据查询的时候会非常的慢,因为hive默认使用的引擎是MapReduce。因此就将spark作为hive的引擎来对hbase进行查询,在成功的整合之后,我将如何整合的过程写成本篇博文。具体如下!事前准备在进行整合之前,首先确保Hive
转载 2023-07-13 16:50:10
45阅读
一. Hbase 的 region我们先简单介绍下 Hbase 的 架构和 region : 从物理集群的角度看,Hbase 集群中,由一个 Hmaster 管理多个 HRegionServer,其中每个 HRegionServer 都对应一台物理机器,一台 HRegionServer 服务器上又可以有多个 Hregion(以下简称 region)。要读取一个数据的时候,首先要先找到存
什么是MVCC ?MVCC(MultiVersionConsistencyControl , 多版本控制协议),是一种通过数据的多版本来解决读写一致性问题的解决方案。在隔离性级别中,MVCC可以解决“可重复读”的隔离(即除了最后一级别的幻读无法解决,幻读只能事务串行化解决),基本是同一份数据并发条件下保证读写一致性的一个理想方案了。一般情况下MVCC的一种实现思路是类似乐观锁(OCC,又叫乐观并发
转载 2023-07-12 10:52:44
67阅读
何为依赖?由于RDD是粗粒度的操作数据集,每个Transformation操作都会生成一个新的RDD,所以RDD之间就会形成类似流水线的前后依赖关系;RDD和它依赖的父RDD(s)的关系有两种不同的类型,即窄依赖(narrow dependency)和宽依赖(wide dependency)。如图所示显示了RDD之间的依赖关系?窄依赖:是指每个父RDD的每个Partition都只被子RDD的一个P
转载 2023-08-18 16:32:53
67阅读
一、宽依赖和窄依赖的定义【宽依赖:】 宽依赖表示同一个父(上游)RDD 的 Partition 被多个子(下游)RDD 的 Partition 依赖,会引起 Shuffle,总结:宽依赖我们形象的比喻为多生。有shuffle阶段【窄依赖:】 窄依赖表示每一个父(上游)RDD 的 Partition 最多被子(下游)RDD 的一个 Partition 使用,窄依赖我们形象的比喻为独生子女。没有shu
  • 1
  • 2
  • 3
  • 4
  • 5