数据挖掘-数据分类 python实现利用KNN实现性别判定# -*-coding:utf-8-*- """ Author: Thinkgamer Desc: 代码4-5 利用KNN算法实现性别预测 """ import numpy as np class KNN: def __init__(self, k): # k为最近邻个数
转载 2023-09-07 15:07:40
94阅读
python数据挖掘工具包有什么优缺点?【导读】python数据挖掘工具包就是scikit-learn,scikit-learn是一个基于NumPy, SciPy, Matplotlib的开源机器学习工具包,主要涵盖分类,回归和聚类算法,例如SVM, 逻辑回归,朴素贝叶斯,随机森林,k-means等算法,代码和文档都非常不错,在许多Python项目中都有应用。优点:1、文档齐全:官方文档齐全,更新
转载 2023-10-28 14:13:52
0阅读
如果你有志于做一个数据专家,你就应该保持一颗好奇心,总是不断探索,学习,问各种问题。在线入门教程和视频教程能帮你走出第一步,但是最好的方式就是通过熟悉各种已经在生产环境中使用的工具而为成为一个真正的数据专家做好充分准备。我咨询了我们真正的数据专家,收集整理了他们认为所有数据专家都应该会的七款Python 工具。The Galvanize Data Science 和 GalvanizeU课程注重让
机器学习和数据挖掘这两个概念不太好区分首先是scikit-learn,scikit-learn是一个基于NumPy, SciPy, Matplotlib的开源机器学习工具包,主要涵盖分类,回归和聚类算法,例如SVM, 逻辑回归,朴素贝叶斯,随机森林,k-means等算法,代码和文档都非常不错,机器学习和数据挖掘这两个概念不容易区分首先是scikit-learn,scikit-learn基于NumP
RR (http://www.r-project.org) 是用于统计分析和图形化的计算机语言及分析工具,为了保证性能,其核心计算模块是用C、C++和Fortran编写的。同时为了便于使用,它提供了一种脚本语言,即R语言。R语言和贝尔实验室开发的S语言类似。R支持一系列分析技术,包括统计检验、预测建模、数据可视化等等。在CRAN(http://cran.r-project.org) 上可以找到众多
SPSS是一个统计功能非常完善的软件  SPSS是软件英文名称的首字母缩写,原意为Statistical Package for the Social Sciences,即“社会科学统计软件包”。但是随着SPSS产品服务领域的扩大和服务深度的增加,SPSS公司已于2000年正式将英文全称更改为Statistical Produc
转载 2024-01-12 18:55:24
61阅读
当今这个时代,说数据就是金钱一点都不夸张。随着向一个基于应用的领域过渡,数据则呈现出了指数级增长。然而,大部分数据是非结构化的,因此它需要一个程序和方法来从中提取有用信息,并且将其转换为可理解、可用的形式。而在数据挖掘任务中,有大量的工具可供使用,比如采用人工智能、机器学习,以及其他技术等来提取数据。以下为您推荐六款强大的开源数据挖掘工具:1、RapidMiner该工具是用Java语言编写的,通过
【IT168 资讯】本篇文章介绍五个免费开源的数据挖掘软件  Orange  Orange 是一个基于组件的数据挖掘和机器学习软件套装,它的功能即友好,又很强大,快速而又多功能的可视化编程前端,以便浏览数据分析和可视化,基绑定了Python以进行脚本开发。它包含了完整的一系列的组件以进行数据预处理,并提供了数据帐目,过渡,建模,模式评估和勘探的功能。其由C++和 Python开发,它的
业界常见的数据挖掘软件介绍一、主要介绍12种1.传统的数据挖掘套件(Classic suites):SAS Enterprise Miner 5.3 SPSS Clementine 122.开源数据挖掘软件(Open Source):Weka 3.4.13 RapidMiner 4.2 KNIME 1.3.5 3.自动化数据挖掘软件(Self-Acting):KXEN Analytic
IDMer说道:本文只对几种流行的开源数据挖掘平台进行了检视,比如Weka和R等。如果您想找寻更多的开源数据挖掘软件,可以到KDnuggets和Open Directory上查看。为了评测这些软件,我们用了UCI Machine Learning Repository上的心脏病诊断数据集。 R R (http://www.r-project.org
数据在当今世界意味着金钱。随着向基于app的世界的过渡,数据呈指数增长。然而,大多数数据是非结构化的,因此需要一个过程和方法从数据中提取有用的信息,并将其转换为可理解的和可用的形式。数据挖掘或“数据库中的知识发现”是通过人工智能、机器学习、统计和数据库系统发现大数据集中的模式的过程。免费的数据挖掘工具包括从完整的模型开发环境如Knime和Orange,到各种用Java、c++编写的库,最常见的是P
转载 2023-07-03 21:46:49
158阅读
本文的主要内容编译自Blaz Zupan和Janez Demsar的一篇论文(Open-Source Tools for Data Mining)。我仅仅选择其中的要点和大家共享,同时加入一些个人的点评意见。此外,对开源的数据挖掘工具有兴趣的同仁,可以关注以下OSDM09这个workshop,它会在PAKDD'09上同时进行,主要讨论的就是开源数据挖掘工具的议题。开源的数据挖掘工具(Open-So
背景中医药治疗乳腺癌有着广泛的适应证和独特的优势。从整体出发,调整机体气血、阴阳、脏腑功能的平衡,根据不同的临床证候进行辨证论治。确定“先证而治”的方向:即后续证侯尚未出现之前,需要截断恶化病情的哪些后续证侯。找出中医症状间的关联关系和诸多症状间的规律性,并且依据规则分析病因、预测病情发展以及为未来临床诊治提供有效借鉴。能够帮助乳腺癌患者手术后体质的恢复、生存质量的改善,有利于提高患者的生存机率。
# 使用Orange数据挖掘软件进行数据分析 数据挖掘是从大量数据中提取有用信息的过程,在这一过程中,使用合适的工具可以极大地提高分析的效率。Orange是一款开源的数据挖掘软件,其界面友好且功能强大,广泛应用于机器学习和数据分析领域。本文将详细介绍如何使用Orange进行数据分析,并提供一些代码示例以及相应的流程和序列图。 ## Orange简介 Orange是一款用于数据分析和数据可视化
数据挖掘软件首推R,它的优点在于函数都给你写好了,你只需要知道参数的形式就行了,有时候即使参数形式不对,R也能“智能地”帮你适应。这种简单的软件适合想要专注于业务的人。R作为一款用于统计分析和图形化的计算机语言及分析工具,为了保证性能,其核心计算模块是用C、C++和Fortran编写的。同时为了便于使用,它提供了一种脚本语言,即R语言。R支持一系列分析技术,包括统计检验、预测建模、数据可视化等等。
免费数据挖掘软件 数据挖掘是一种从大量数据中发现模式、关联和趋势的过程,它可以帮助我们提取有价值的信息,并用于预测和决策。在过去,数据挖掘技术主要被大型企业和研究机构所使用,因为商业化的数据挖掘软件价格昂贵,对于个人用户来说并不实惠。然而,随着开源技术的发展和互联网的普及,越来越多的免费数据挖掘软件出现,使个人用户也能够享受到数据挖掘的好处。 在本文中,我们将介绍一些流行的免费数据挖掘软件,并
原创 2024-02-12 04:24:58
51阅读
应用场景当遇到数据分类,聚类,预测等场景问题,普通的SQL方法无法解决,需要借助算法这件武器,比如聚类算法,分类算法,预测算法等等,但是手动去研究一个算法比较吃力,有没有那种工具,直接拖拉拽的方式,直接将算法利用起来呢?比如免费版的SPSS,SAS等,今天介绍一款收费版的SmartbiMining,仅仅试用,如果真要生产使用,是要购买的,量力而行!操作步骤1. 概述SmartMining,作为国产
1、数据挖掘软件之ANGOSS软件公司KnowledgeSTUDIO平台:NT , Windows 9X功能:CHAID算法,支持PMML,留有与SAS、S-Plus的接口,能够灵活地导入外部模型和产生规则,包含神经网络建模的能力优点:响应快,模型、文档易于理解,决策树分析直观/性能良好,SDK中容易加入新的算法缺点:决策树不能编辑打印,SDK缺乏数据预处理阶段的函数,没有示例代码,不支持AIX应
  大数据挖掘建模平台让数据创造更大价值,从场景里解决问题,从上传数据、拖拽组件、运行计算、即可输出数据处理结果。    大数据挖掘建模平台媒体案例:广州珠江数码广电大数据智能推荐     解决方案     广电用户服务大数据平台围绕“降流失,增营收的经济和社会效益双提升的技术应用目的”整合广电公司运营、客服、运维、产
从原理上说,数据挖掘应该可以应用到任何信息存储方式的知识挖掘中,但是挖掘的挑战性和技术会因为源数据的存储类型的不同而不同。特别是,近年来的研究表明数据挖掘所涉及的数据存储类型越来越丰富,除了一些有通用价值的模型、构架等研究外,也开展了一些针对复杂或新型数据存储方式下的挖掘技术或算法的研究。本节将针对一些主要的数据存储类型中的数据挖掘的问题进行介绍。    一个事务数据
  • 1
  • 2
  • 3
  • 4
  • 5