数据可视化工具百度ECharts:http://echarts.baidu.com/Cytoscape:http://www.cytoscape.org/ICHarts:http://www.icharts.in/D3 :https://github.com/mbostock/d3/wiki/Gallery信息图在线工具Infogr.am :https://infogr.am/Venngage :
原创 2021-02-02 15:46:47
291阅读
11款数据分析工具(附体验网址) 11款数据分析工具(附体验网址) 毋庸置疑,大数据市场是一座待挖掘的金矿。随着数据使用量的增长,将有更多的人通过数据来寻求专业问题的答案。可视化数据分析工具的出现让人们可以通过将数据可视化来探讨问题、揭示洞见,用数据分享故事。甚至于不懂挖掘算法的人员,也能够为用户进
转载 2016-07-01 10:35:00
51阅读
非常实用,亲测!
转载 2021-08-11 17:08:50
355阅读
查看网站详细信息首先进入网站https://www.lagou.com/jobs/list_java?labelWords=&fromSearch=true&suginput=注意其带有参数,并且翻页的时候网址并没有发生变化此时就只能使用F12查看其请求的接口发现在翻页的时候,其使用了post方式请求了如下网址(post需要带参数data进行访问,data为一个字典,指定了提交的参
不用任何公开参考资料,估算今年新生儿出生数量 解答:1)采用两层模型(人群画像人群转化):新生儿出生数=Σ各年龄层育龄女性数量各年龄层生育比率 2)从数字到数字:如果有前几年新生儿出生数量数据,建立时间序列模型(需要考虑到二胎放开的突变事件)进行预测 3)找先兆指标,如婴儿类用品的新增活跃用户数量X表示新生儿家庭用户。Xn/新生儿n为该年新生儿家庭用户的转化率,如X2007/新生儿2007位为20
当我们谈论IT服务管理(ITSM)世界中的大数据时,这里有两个非常不同的概念: • IT为业务提供的大数据工具/服务:对关键的业务运营数据进行数据索引。 • IT运营中的大数据:处理和利用复杂的IT运营数据。大数据中的业务运营服务在竞争日益激烈,数据驱动的世界中,企业管理者都在寻找能够有效管理和解释业务数据(尤其是大数据)的方法。数字化的业务操作,如:电子商务网站和银行移动APP,它们产生了大量的
转载 2023-10-03 08:52:17
206阅读
1.数据分析方法分类业务数据分析师(对数学建模的要求较低)、数据挖掘(对业务与数学建模的要求较高)、大数据分析(需要一定的编程能力)。层层进阶2.职位进阶3.数据分析结果数据可视化4.数据分析的流程在业务理解中要多问问题,了解需求,知道问题的核心。可以看书籍《学会提问》。5. 围绕数据分析师的三大类工作内容
原创 2022-04-15 21:35:17
1588阅读
今天给大家分享的这篇文章,更像是一份数据分析常用网站字典,一共70个,可视化、词频词云、PPT模板等等面面俱到,值得收藏!  数据可视化工具百度ECharts​​http://echarts.baidu.com/​​Cytoscape​​http://www.cytoscape.org/​​图表秀​​http://www.tubiaoxiu.com/​​数据观​​http://
转载 2023-01-02 11:48:33
253阅读
一份数据分析常用网站字典,一共70个,可视化、词频词云、PPT模板等等面面俱到,建议收藏~
转载 2021-07-02 16:35:56
139阅读
数据技术和数据分析有什么关系大数据经过多年发展形成了一个完整的产业链和技术链,大数据的产业链是围绕技术链来打造的,而大数据的技术链则围绕数据价值化这个中心来展开,涉及到数据的采集、存储、安全、分析、呈现和应用,那么大数据技术和数据分析有什么关系呢?1、从大数据的技术链来看:数据分析是其中的重要一环,也是目前大数据价值化的核心环节,所以很多人也把大数据就理解为数据分析了。虽然数据分析比较重要,但是
什么是数据分析数据分析是根据业务问题,对数据进行收集,清洗,处理和建模的过程,用于识别有助于业务的信息,获取关键业务结论并辅助决策制定。这个定义实际上是从两个层面来解释数据分析:它具体是在做什么: 业务问题的界定、数据的收集与整理、分析与模型。它能产生什么样的价值:为企业盈利,为企业的生存和发展建立基础。数据分析越发重要的原因数据增长,用户创造了大量的数据数据的储存与计算能力不断提升在大数据环境下
转载 2024-01-10 15:57:45
123阅读
2022年数据分析有哪些新趋势?今年数据分析主要趋势:1.激活多样性和活力使用自适应AI系统推动增长和创新同时应对全球市场的波动; 2.增强人员能力和决策以提供由业务模块化组件创建的丰富的、情境驱动的分析; 3.将信任制度化以大规模地实现数据分析的价值。管理AI风险并实施跨分布式系统、边缘环境和新兴生态系统的互联治理。现在应该根据关键数据分析技术趋势对于业务优先事项的紧迫性和匹配性来监测、
 相关性分析散点图矩阵初判多变量间关系,两两数据之间的,比如说4个数据ABCD,就有12个比较,第一个参数和第二个参数,第一个参数和第三个参数,.......这个图就是正态分布的几个参数,就没有任何的相关性 相关性分析 分析连续变量之间的线性相关程度的强弱 图示初判 / Pearson相关系数(皮尔逊相关系数) / Sperman秩相关系数(斯皮尔曼相关系数) 1
转载 2024-01-11 12:33:35
143阅读
近两年来,大数据发展浪潮席卷全球。研究机构IDC预测,全球大数据分析市场规模将由2015年的1220亿美元,在5年间成长超过50%,并在2019年底达到1870亿美元的规模。资本也敏锐地追逐着高增长市场。数据显示,美国在2013年大数据领域的新创公司就获得了36亿美金(200多亿人民币)的投资,硅谷大数据公司Palantir更是获得高达200亿美金的估值。对于被大数据概念包围的人们来说,理解大数
转载 2023-08-03 20:57:05
146阅读
做RFM分析的时候要知道RFM分析数据格式有两种:  一种是交易数据,也就是每次交易占用一行,关键变量是客户ID、交易日期和交易金额;  另一种是客户数据,就是每个客户占用一行,关键变量是客户ID、交易金额、交易次数和最近交易日期。为了保证数据的准确性,建议采用交易数据格式进行分析,实际上交易数据是可以整理成为客户数据的,而客户数据是无法还原为交易数据的。我从我们后台导出来的就是客户数据,我这里
转载 2023-10-24 00:04:35
163阅读
这是python数据分析的学习部分啦~ 由于数据分析,涉及到绘图、计算撒的,所以我转向用Jupyter编辑器的使用,在很前面的一篇博客也介绍了怎么安装Python 、 PyCharm 、 Anaconda 介绍及安装 当然也可以不用通过 Anaconda,可以直接通过pip install jupyter命令直接安装呀,下面就开始较详细介绍一下Jupyter Notebooks好啦,正文开始 Ju
诸葛从以下几个方面入手,什么是数据分析,怎么做数据分析,为什么要做数据分析,如何才能做得更好。   1.什么是数据分析 所谓数据分析就是将产品相关的数据收集整合,然后利用特定的方法去分析这些数据,从中发现规律或是得到结论。 这些特定的方法可以包括专业的统计学、数学建模等,也可以从数据的维度和广度出发,数据收集或对比、总结相似数据的相同性、异常数据出现的可能原因,这
一个完整的数据分析流程,应该包括以下几个方面,建议收藏此图仔细阅读。(注:图保存下来,查看更清晰) 作为数据分析师,无论最初的职业定位方向是技术还是业务,最终发到一定阶段后都会承担数据管理的角色。因此,一个具有较高层次的数据分析师需要具备完整的知识结构。1. 数据采集了解数据采集的意义在于真正了解数据的原始面貌,包括数据产生的时间、条件、格式、内容、长度、限制条件等。这会帮助数据分析师更
目录一、Apache Pig概述二、Apache Pig架构1)架构图2)Apache Pig组件1、Parser(解析器)2、Optimizer(优化器)3、Compiler(编译器)4、Execution engine(执行引擎)三、Apache Pig安装1)下载Apache Pig2)配置环境变量3)修改配置四、Apache Pig执行模式1)本地模式2)Tez 本地模式3)Spark 本
转载 2023-12-20 21:04:58
199阅读
1. 设备型号TF20 场发射透射电镜,配备能谱仪2.原理TEM(Transmission Electron Microscope, 透射电子显微镜) 具有较高的分辨率是半导体失效分析领域最常用的仪器之一,其以高能电子束作为光源,用电磁场作透镜,将经过加速和聚集的电子束投射到非常薄的样品上,电子和样品中的原子因碰撞改变方向,从而产生立体角散射。散射角的大小与样品的密度、厚度相关,因此可以
  • 1
  • 2
  • 3
  • 4
  • 5