当我们谈论IT服务管理(ITSM)世界中的大数据时,这里有两个非常不同的概念: • IT为业务提供的大数据工具/服务:对关键的业务运营数据进行数据索引。 • IT运营中的大数据:处理和利用复杂的IT运营数据。大数据中的业务运营服务在竞争日益激烈,数据驱动的世界中,企业管理者都在寻找能够有效管理和解释业务数据(尤其是大数据)的方法。数字化的业务操作,如:电子商务网站和银行移动APP,它们产生了大量的
转载 2023-10-03 08:52:17
142阅读
不用任何公开参考资料,估算今年新生儿出生数量 解答:1)采用两层模型(人群画像人群转化):新生儿出生数=Σ各年龄层育龄女性数量各年龄层生育比率 2)从数字到数字:如果有前几年新生儿出生数量数据,建立时间序列模型(需要考虑到二胎放开的突变事件)进行预测 3)找先兆指标,如婴儿类用品的新增活跃用户数量X表示新生儿家庭用户。Xn/新生儿n为该年新生儿家庭用户的转化率,如X2007/新生儿2007位为20
1.数据分析方法分类业务数据分析师(对数学建模的要求较低)、数据挖掘(对业务与数学建模的要求较高)、大数据分析(需要一定的编程能力)。层层进阶2.职位进阶3.数据分析结果数据可视化4.数据分析的流程在业务理解中要多问问题,了解需求,知道问题的核心。可以看书籍《学会提问》。5. 围绕数据分析师的三大类工作内容
原创 2022-04-15 21:35:17
1282阅读
数据技术和数据分析有什么关系大数据经过多年发展形成了一个完整的产业链和技术链,大数据的产业链是围绕技术链来打造的,而大数据的技术链则围绕数据价值化这个中心来展开,涉及到数据的采集、存储、安全、分析、呈现和应用,那么大数据技术和数据分析有什么关系呢?1、从大数据的技术链来看:数据分析是其中的重要一环,也是目前大数据价值化的核心环节,所以很多人也把大数据就理解为数据分析了。虽然数据分析比较重要,但是
对于一个ML问题,解决思路通常是:拿到数据后怎么了解数据(可视化) 选择最贴切的机器学习算法 定位模型状态(过/欠拟合)以及解决方法 大量极的数据的特征分析与可视化 各种损失函数(loss function)的优缺点及如何选择首先拿到数据要进行***数据分析***数据准备->数据清洗->数据重构->数据分析 典型的重构就是归一化可以利用降维算法来实现数据的处理,用更少的特征描述原
转载 2023-08-31 13:00:09
225阅读
数据分析之MySQL学习参考课程:戴师兄数据分析原始幕布格式笔记:戴师兄数据分析启蒙课:SQL基础语法+运行原理+云端数据库搭建.opml,提取码: jb27基础语法语法结构:select--from--where--group by--having--order by--limit运行顺序:from--where--group by--having--order by--limit--selec
转载 2023-09-21 14:20:23
91阅读
数据分析一、数据分析——基础1.什么是数据分析1.1数据分析的概念1.2数据分析的应用1.3数据分析方法1.3.1对比分析1.3.2同比分析1.3.3环比分析1.3.4 80/20分析1.3.5 回归分析1.3.6 聚类分析1.3.7时间序列分析1.4数据分析工具1.5数据分析流程二、数据分析——numpy2.1numpy概述2.1.1numpy介绍2.2数据预处理2.2.1数据读写2.2.1.
  数聚智慧决策门户SDP (Smart Decision Platform)是企业级的商业智能数据门户,以信息的民主与集中来改善企业的管理水平,保护企业已有报表与数据分析资产。SDP通过兼容开放的特性、灵活的用户权限配置、便捷的报表访问体验以及高效的互动交流方式,实现企业报表的高度集成、权限管控与协同共享。  数聚智慧决策门户是数聚公司在总结了为多家著名企业实施商业智能BI(Business I
究竟什么是数据分析师?其定位和价值是什么?近年来互联网经济的蓬勃发展可谓给数据大规模累积提供了沃土,专家大拿们对大数据技术与应用的讨论和研究热度不减,对数据中隐含的深层价值及其应用的重视程度越来越高,更多人开始注重视量化分析、科学及高效地决策,这个过程中越来越多的企业就产生了对专业化的分析人才的需求。简单通用地讲,数据分析师是一类能够在建立明确分析目标基础上对数据进行搜集、加工、分析并挖掘出有价值
时间序列一、定义二、构成要素三、时间序列预测模型3.1 指数平滑法3.2 ARIMA模型3.3霍尔特-温特模型 一、定义时间序列(或称动态数列) 是指将同一统计指标的数值按其发生的时间先后顺序排列而成的数列。时间序列分析的主要目的是根据已有的历史数据对未来进行预测。经济数据中大多数以时间序列的形式给出。根据观察时间的不同,时间序列中的时间可以是年份、季度、月份或其他任何时间形式。二、构成要素1)
1. 什么是数据分析1) 数据分析发展背景进入到 21 世纪以后,伴随着互联网的迅速发展,大数据应运而生,越来越多的数据被不断的挖掘出来,形成了“数据为王”的时代。就拿我们自己举例子,比如你的购物习惯、你的喜好等等,这些都会组成数据,对你购物习惯的分析会帮助购物平台更精准的推荐商品,这只是数据分析应用的冰山一角,它还可以应用到金融领域、交通领域、畜牧业等等。随着数据规模越来越庞大,单靠人力重复的脑
一、TuShare简介和环境安装  TuShare是一个著名的免费、开源的python财经数据接口包。其官网主页为:TuShare -财经数据接口包。该接口包如今提供了大量的金融数据,涵盖了股票、基本面、宏观、新闻的等诸多类别数据(具体请自行查看官网),并还在不断更新中。TuShare可以基本满足量化初学者的回测需求  环境安装:pip install tushare。如果是老版本升级,可以用升级
什么是数据分析数据分析是根据业务问题,对数据进行收集,清洗,处理和建模的过程,用于识别有助于业务的信息,获取关键业务结论并辅助决策制定。这个定义实际上是从两个层面来解释数据分析:它具体是在做什么: 业务问题的界定、数据的收集与整理、分析与模型。它能产生什么样的价值:为企业盈利,为企业的生存和发展建立基础。数据分析越发重要的原因数据增长,用户创造了大量的数据数据的储存与计算能力不断提升在大数据环境下
近两年来,大数据发展浪潮席卷全球。研究机构IDC预测,全球大数据分析市场规模将由2015年的1220亿美元,在5年间成长超过50%,并在2019年底达到1870亿美元的规模。资本也敏锐地追逐着高增长市场。数据显示,美国在2013年大数据领域的新创公司就获得了36亿美金(200多亿人民币)的投资,硅谷大数据公司Palantir更是获得高达200亿美金的估值。对于被大数据概念包围的人们来说,理解大数
转载 2023-08-03 20:57:05
110阅读
诸葛从以下几个方面入手,什么是数据分析,怎么做数据分析,为什么要做数据分析,如何才能做得更好。   1.什么是数据分析 所谓数据分析就是将产品相关的数据收集整合,然后利用特定的方法去分析这些数据,从中发现规律或是得到结论。 这些特定的方法可以包括专业的统计学、数学建模等,也可以从数据的维度和广度出发,数据收集或对比、总结相似数据的相同性、异常数据出现的可能原因,这
1.引言前面我们学会了指数哥伦布解码,翻翻白皮书,依靠这个知识,基本上我们就能一口气解码完SPS,PPS,SEI,Slice Header了。在Slice Data里会出现一些ae(v)类型的熵编码,这个我们后面再看 。 接下来的重点就是,认真的看一下解码出来的每个参数的作用。这些参数在后续的计算YUV的过程中都会起到对应的作用。 首先,我们从SPS开始。2. SPSSPS,即sequence p
做RFM分析的时候要知道RFM分析数据格式有两种:  一种是交易数据,也就是每次交易占用一行,关键变量是客户ID、交易日期和交易金额;  另一种是客户数据,就是每个客户占用一行,关键变量是客户ID、交易金额、交易次数和最近交易日期。为了保证数据的准确性,建议采用交易数据格式进行分析,实际上交易数据是可以整理成为客户数据的,而客户数据是无法还原为交易数据的。我从我们后台导出来的就是客户数据,我这里
转载 2023-10-24 00:04:35
103阅读
目录一、Apache Pig概述二、Apache Pig架构1)架构图2)Apache Pig组件1、Parser(解析器)2、Optimizer(优化器)3、Compiler(编译器)4、Execution engine(执行引擎)三、Apache Pig安装1)下载Apache Pig2)配置环境变量3)修改配置四、Apache Pig执行模式1)本地模式2)Tez 本地模式3)Spark 本
 相关性分析散点图矩阵初判多变量间关系,两两数据之间的,比如说4个数据ABCD,就有12个比较,第一个参数和第二个参数,第一个参数和第三个参数,.......这个图就是正态分布的几个参数,就没有任何的相关性 相关性分析 分析连续变量之间的线性相关程度的强弱 图示初判 / Pearson相关系数(皮尔逊相关系数) / Sperman秩相关系数(斯皮尔曼相关系数) 1
商业智能提供的解决方案能够从多种数据源获取数据并且能够把各种数据转化成同一格式数据进行存储,最终达到让用户可以快速访问解读数据,为用户分析和制定决定提供有效的数据支持。可以人为的把商业智能分为以下几层:数据源层:公司日常工作中会存在多种格式的数据,如文本文档,excel文件,access数据库文件,SQL Server数据库文件等。数据转换层:由于数据源存在多样化,为了方便分析,需要对它们进行一定
  • 1
  • 2
  • 3
  • 4
  • 5