写在前面的话:最近做双目匹配,需要用到OpenCV的特征识别匹配,但是对于低反射率物体即使投影了随机散斑之后出来的效果依旧很差,于是乎看看特征匹配的源码,看看能不能从原理上有所发现(用的knnMatch并且已经极线对准,可是效果在有的图上比较凉凉)。废话不多说,这篇博文讲的是看源码学习OpenCV,仿佛没找到比较好的文章,于是,自己看,写一个。后续有发现的话在后面补充。环境:OpenCV3.2源码
 面部特征检测应用很多,我将在下一节介绍当前项目用到一个典型例子,因为疲劳检测有一张方案是通过检测人眼的闭合时间来实现的,在实际装车应用中效果还不错。本节先介绍一下opencv中自带的特征点检测功能,后续将讲解如何使用opencv+dlib实现疲劳检测功能。现在OpenCV支持几种本地特征检测算法。然而,由于两个原因,实际使用中还需要做更多的工作1、Python支持:截至OpenCV3.
转载 2024-03-29 12:04:24
140阅读
Opencvmark寻边 通过mark进行是很常见的项目,mark就在这里,mark的作用就是为了让摄像头在运动中通过mark点来确
转载 2022-04-13 16:57:21
1389阅读
这篇博客介绍iptables和netfilter中所有可用的匹配,章节比较厂,没必要去学习每个匹配的具体细节,大致了解下即可,后续要用到再深入掌握它。一 、Iptables 的匹配(match)在本篇中,我们将讨论更多关于匹配的内容。我选择将匹配范围缩小到五个不同的子类别。首先我们有通用匹配,它可以在所有规则中使用。然后我们有TCP匹配,它只能应用于TCP数据包。UDP匹配只适用于UDP报文,IC
转载 2024-05-24 13:52:07
191阅读
相关性搜索void MarkerDetector::findMarkerCandidates( const ContoursVector& contours, std::vector<Marker>& detectedMarkers) { PointsVector approxCurve;//相似形状 std::vector<Marker>
在本教程中我们将涉及以下内容: 这个教程的源代码如下所示。你还可以从 以下链接下载得到源代码 这里是第一张图特征点检测结果: 此外我们通过控制台输出FLANN匹配关键结果: Shuai Zheng, <kylezheng04@gmail.com>, http://www.cbsr.ia.ac.cn
转载 2016-03-18 15:21:00
341阅读
  1 #include <stdio.h> 2 #include <iostream> 3 #include "opencv2/core/core.hpp" 4 #include "opencv2/features2d/features2d.hpp" 5 #include "opencv2/highgui/highgui.hpp" 6 7 using n
转载 2020-01-09 13:34:00
241阅读
2评论
opencv图像特征的提取和匹配(一)opencv中进行特征的提取和匹配的思路一般是:提取特征、生成特征的描述子,然后进行匹配opencv提供了一个三个类分别完成图像特征的提取、描述子生成和特征匹配,三个类分别是:FeatureDetector,DescriptorExtractor,DescriptorMatcher。从这三个基类派生出了不同的类来实现不同的特征提取算法、描述及匹
目录概念步骤单个对象匹配代码实现一代码实现二多个对象匹配代码实现 概念模板匹配与剪辑原理很像,模板在原图像上从原点开始浮动,计算模板(图像被模板覆盖的地方)的差别程度,这个差别程度的计算方法在opencv里有六中,人后将每次计算的结果放入一个矩阵里面,作为输出结果。加入原图形是A*B大小,则输出结果的矩阵是(A-a+1)(B-b+1) 匹配完之后,告诉你每一个位置的结果,(结果会因为匹配算法不同
内容来自OpenCV-Python Tutorials 自己翻译整理目标: 学习匹配一副图片和其他图片的特征。 学习使用OpenCV中的Brute-Force匹配和FLANN匹配。暴力匹配(Brute-Force)基础暴力匹配很简单。首先在模板特征描述符的集合当中找到第一个特征,然后匹配目标图片的特征描述符集合当中的所有特征匹配方式使用“距离”来衡量,返回“距离”最近的那个。对于Br
实际云中隐藏着真实的曲面,如果能把这个曲面重构出来,然后选用代表性高的激光(曲率、法向量过滤)与曲面进行匹配,则匹配精度会非常好,这就是IMLS ICP。1.基本思想IMLS(Implict Moving Least Square)Implict实际的意思就是隐式的构建曲面,Moving指的是随匹配点在参考系云上进行窗口式的滑动,Least Square指的是利用最小二乘法来对曲面进行拟合可
KMP算法百度百科KMP算法要解决的问题就是在字符串(也叫主串)中的模式(pattern)定位问题。说简单点就是我们平时常说的关键字搜索。模式串就是关键字(接下来称它为P),如果它在一个主串(接下来称为T)中出现,就返回它的具体位置,否则返回-1(常用手段)。首先,对于这个问题有一个很单纯的想法:从左到右一个个匹配,如果这个过程中有某个字符不匹配,就跳回去,将模式串向右移动一位。这有什么难的?我们
代码主体和数据文件satellite.txt 加入了自己的修改,参数设置在代码的最前面,可以选择kd-tree或者暴力计算最近邻。 可直接运行代码以及数据文件可从此下载% 程序说明:输入data_source和data_target两个云,找寻将data_source映射到data_targe的旋转和平移参数 clear; close all; clc; %% 参数配置 kd = 1; inl
转载 2024-03-19 19:14:47
97阅读
理论作为OpenCV的狂热者,关于ORB的最重要的事情是它来自“ OpenCV Labs”。该算法由Ethan Rublee,Vincent Rabaud,Kurt Konolige和Gary R. Bradski在其论文《ORB:SIFT或SURF的有效替代方案》中提出。2011年,正如标题所述,它是计算中SIFT和SURF的良好替代方案成本,匹配性能以及主要是专利。是的,SIFT和SURF已获
  router模块是xmpp 消息包在每个节点上的主router。它根据每个消息包的目的域对消息包进行路由。该模块有一张route表。首先根据消息包的目的地部分去搜索route表, 如果找到的话,就更加local_hint来判断是否进行相关的处理还是将该消息包路由到相应的进程,如果没有找到,就发送到S2S manager。  下面来对ejabberd_router.erl源代
因为pcl的云模板匹配遇到了各种困难,暂时先用opencv的模板匹配函数做一个简单的焊缝识别,看看效果。此方法的缺陷就在于物体和相机位置必须固定,只允许微小位移,否则数据将失效。1什么是模板匹配? 模板匹配是一种用于查找与模板图像(补丁)匹配(类似)的图像区域的技术。 虽然补丁必须是一个矩形,可能并不是所有的矩形都是相关的。在这种情况下,可以使用掩模来隔离应该用于找到匹配的补丁部分。它是如何工作
Kinect实现图像的采集和云配准使用opencv对Kinect2相机采集的深度图像和彩色图像实现配准opencv的数据结构实现采集和映射的代码 使用opencv对Kinect2相机采集的深度图像和彩色图像实现配准使用opencv对Kinect2采集的深度图像和彩色图像进行配准结果进行显示。opencv的数据结构在进行kinect2相机实现云的配准过程中,使用opencv创建了Mat类型的数
matchTemplate模板匹配和卷积运算大致相同,模板图类似于卷积核,从原图的左上角开始进行滑动窗口的操作,最后得到一个特征图,这个特征图里的数值就是每次计算得到的相似度,通用匹配方式,相似值是(0-1)之间。 (最简单的一个例子,用两张相同的图片传入模板匹配函数中,只会进行一次相似计算,最后得到的特征图数值为([1,])  OpenCV中的模板匹配函数为matchTemplate,参数如下,
opencv特征匹配方法有两种,分别是:暴力特征匹配BF(Brute-Force),暴力特征匹配方法。它使用第一组中的每个特征的描述子,与第二组中的所有特征描述子进行匹配,计算它们之间的差距,然后将最接近一个匹配返回。FLANN特征匹配在进行批量特征匹配时,FLANN速度更快。 由于它使用的是邻近近似值,所以精度较差。Opencv特征匹配实现的简单过程:第一步:定义特征检测器(SIFT,SURF,
转载 2023-09-24 17:47:20
381阅读
模板匹配模板匹配是一项在一幅图像中寻找与另一幅模板图像最匹配(相似)部分的技术.实现:我们需要2幅图像:原图像 (I): 在这幅图像里,我们希望找到一块和模板匹配的区域模板 (T): 将和原图像比照的图像块我们的目标是检测最匹配的区域:为了确定匹配区域, 我们不得不滑动模板图像和原图像进行 比较 :通过 滑动, 我们的意思是图像块一次移动一个像素
  • 1
  • 2
  • 3
  • 4
  • 5