opencv图像特征点的提取和匹配(一)opencv中进行特征点的提取和匹配的思路一般是:提取特征点、生成特征点的描述子,然后进行匹配。opencv提供了一个三个类分别完成图像特征点的提取、描述子生成和特征点的匹配,三个类分别是:FeatureDetector,DescriptorExtractor,DescriptorMatcher。从这三个基类派生出了不同的类来实现不同的特征提取算法、描述及匹
转载
2023-12-21 15:45:53
197阅读
目录概念步骤单个对象匹配代码实现一代码实现二多个对象匹配代码实现 概念模板匹配与剪辑原理很像,模板在原图像上从原点开始浮动,计算模板(图像被模板覆盖的地方)的差别程度,这个差别程度的计算方法在opencv里有六中,人后将每次计算的结果放入一个矩阵里面,作为输出结果。加入原图形是A*B大小,则输出结果的矩阵是(A-a+1)(B-b+1) 匹配完之后,告诉你每一个位置的结果,(结果会因为匹配算法不同
转载
2023-12-18 22:09:19
65阅读
内容来自OpenCV-Python Tutorials 自己翻译整理目标: 学习匹配一副图片和其他图片的特征。 学习使用OpenCV中的Brute-Force匹配和FLANN匹配。暴力匹配(Brute-Force)基础暴力匹配很简单。首先在模板特征点描述符的集合当中找到第一个特征点,然后匹配目标图片的特征点描述符集合当中的所有特征点,匹配方式使用“距离”来衡量,返回“距离”最近的那个。对于Br
转载
2024-03-27 07:47:46
158阅读
实际点云中隐藏着真实的曲面,如果能把这个曲面重构出来,然后选用代表性高的激光点(曲率、法向量过滤)与曲面进行匹配,则匹配精度会非常好,这就是IMLS ICP。1.基本思想IMLS(Implict Moving Least Square)Implict实际的意思就是隐式的构建曲面,Moving指的是随匹配点在参考系点云上进行窗口式的滑动,Least Square指的是利用最小二乘法来对曲面进行拟合可
转载
2024-04-06 12:23:25
91阅读
KMP算法百度百科KMP算法要解决的问题就是在字符串(也叫主串)中的模式(pattern)定位问题。说简单点就是我们平时常说的关键字搜索。模式串就是关键字(接下来称它为P),如果它在一个主串(接下来称为T)中出现,就返回它的具体位置,否则返回-1(常用手段)。首先,对于这个问题有一个很单纯的想法:从左到右一个个匹配,如果这个过程中有某个字符不匹配,就跳回去,将模式串向右移动一位。这有什么难的?我们
代码主体和数据文件satellite.txt 加入了自己的修改,参数设置在代码的最前面,可以选择kd-tree或者暴力计算最近邻点。 可直接运行代码以及数据文件可从此下载% 程序说明:输入data_source和data_target两个点云,找寻将data_source映射到data_targe的旋转和平移参数
clear;
close all;
clc;
%% 参数配置
kd = 1;
inl
转载
2024-03-19 19:14:47
97阅读
理论作为OpenCV的狂热者,关于ORB的最重要的事情是它来自“ OpenCV Labs”。该算法由Ethan Rublee,Vincent Rabaud,Kurt Konolige和Gary R. Bradski在其论文《ORB:SIFT或SURF的有效替代方案》中提出。2011年,正如标题所述,它是计算中SIFT和SURF的良好替代方案成本,匹配性能以及主要是专利。是的,SIFT和SURF已获
转载
2024-09-09 15:28:09
14阅读
因为pcl的点云模板匹配遇到了各种困难,暂时先用opencv的模板匹配函数做一个简单的焊缝识别,看看效果。此方法的缺陷就在于物体和相机位置必须固定,只允许微小位移,否则数据将失效。1什么是模板匹配? 模板匹配是一种用于查找与模板图像(补丁)匹配(类似)的图像区域的技术。 虽然补丁必须是一个矩形,可能并不是所有的矩形都是相关的。在这种情况下,可以使用掩模来隔离应该用于找到匹配的补丁部分。它是如何工作
Kinect实现图像的采集和点云配准使用opencv对Kinect2相机采集的深度图像和彩色图像实现配准opencv的数据结构实现采集和映射的代码 使用opencv对Kinect2相机采集的深度图像和彩色图像实现配准使用opencv对Kinect2采集的深度图像和彩色图像进行配准结果进行显示。opencv的数据结构在进行kinect2相机实现点云的配准过程中,使用opencv创建了Mat类型的数
转载
2024-03-11 06:29:02
66阅读
matchTemplate模板匹配和卷积运算大致相同,模板图类似于卷积核,从原图的左上角开始进行滑动窗口的操作,最后得到一个特征图,这个特征图里的数值就是每次计算得到的相似度,通用匹配方式,相似值是(0-1)之间。 (最简单的一个例子,用两张相同的图片传入模板匹配函数中,只会进行一次相似计算,最后得到的特征图数值为([1,]) OpenCV中的模板匹配函数为matchTemplate,参数如下,
转载
2024-06-18 18:00:08
162阅读
opencv特征匹配方法有两种,分别是:暴力特征匹配BF(Brute-Force),暴力特征匹配方法。它使用第一组中的每个特征的描述子,与第二组中的所有特征描述子进行匹配,计算它们之间的差距,然后将最接近一个匹配返回。FLANN特征匹配在进行批量特征匹配时,FLANN速度更快。 由于它使用的是邻近近似值,所以精度较差。Opencv特征匹配实现的简单过程:第一步:定义特征检测器(SIFT,SURF,
转载
2023-09-24 17:47:20
384阅读
模板匹配模板匹配是一项在一幅图像中寻找与另一幅模板图像最匹配(相似)部分的技术.实现:我们需要2幅图像:原图像 (I): 在这幅图像里,我们希望找到一块和模板匹配的区域模板 (T): 将和原图像比照的图像块我们的目标是检测最匹配的区域:为了确定匹配区域, 我们不得不滑动模板图像和原图像进行 比较 :通过 滑动, 我们的意思是图像块一次移动一个像素
转载
2024-03-05 16:22:35
83阅读
点云的配准一般分为等价集合和律属集合两种配准,其中等价集合配准叫做匹配过程,律属集合配准被称为Alignment。 ICP:Iterative Closest Point迭代最近点),即两个点云纯粹通过刚体位姿变换即可大致重合,参考三维点集拟合:平面拟合、RANSAC、ICP算法。 &n
转载
2024-06-01 15:21:53
91阅读
opencv 特征点提取、匹配(一)opencv中特征点提取和匹配步骤: 提取特征点 生成特征点的描述子 特征点匹配opencv对应类: 图像特征点的提取 — FeatureDetector 特征点描述子生成 – DescriptorExtractor 特征点的匹配 – DescriptorMatcher (可从这三个基类派生出了不同的类来实现不同的特征提取算法、描述及匹配)特征提取
转载
2023-10-10 11:21:26
142阅读
概述除了利用Harris进行角点检测和利用Shi-Tomasi方法进行角点检测外,还可以使用cornerEigenValsAndVecs()函数和cornerMinEigenVal()函数自定义角点检测函数。如果对角点的精度有更高的要求,可以用cornerSubPix()函数将角点定位到子像素,从而取得亚像素级别的角点检测效果。cornerSubPix()函数(1)函数原型cornerSubPix
特征点检测和描述算法的应用比较广泛。在OpenCV中,除了SIFT和SURF之外,还有一些特征点检测算法和特征点描述算子。如ORB、BRISK、FREAK、BRIEF、MSER、FAST、KAZE、AKAZE等。这些算法在opencv里的调用方式基本上都是一样的。在这些算法中,BRIEF、FREAK属于特征点描述算子,其他的一般都是检测特征点和描述特征点一起的。SIFT和SURF的特征点描述方法比
模板匹配模板匹配是它允许在一幅较大的图像中寻找是否存在一个较小的、预定义的模板图像。这项技术的应用非常广泛,包括但不限于图像识别、目标跟踪和场景理解等。目标和原理模板匹配的主要目标是在一幅大图像中定位一个或多个与模板图像相匹配的区域。这个过程就像是用一个“放大镜”在大图像上移动,不断比较模板图像与大图像中相应位置的相似度。通过计算模板图像和大图像中各个位置的像素差异,可以找到与模板图像最为相似的区
目的1、Unity集成openinstall sdk?即免填邀请码安装的渠道追踪统计服务最近在使用一个叫openinstall的SDK,通过它实现免填邀请码的功能,集成到unity游戏开发中。对App安装流程的优化,尤其是免填写邀请码安装,App推广的有奖邀请活动更大程度的达到推广爆炸式的效果。在分享链接自定义各种动态参数(如推广渠道号,邀请码,游戏房间号,用户id等等)。通过在分享链接url中附
作者R。近日,国际计算机视觉大会 ICCV(International Conference on Computer Vision)公布了 2023 年论文录用结果,本届会议共有 8068 篇投稿,接收率为26.8%。ICCV 是全球计算机领域顶级的学术会议,每两年召开一次,ICCV 2023 将于今年10月在法国巴黎举行。今年,旷视研究院 14 篇论文入选,涵盖纯视觉 3D 目标检测、多模态 3
写在前面的话:最近做双目匹配,需要用到OpenCV的特征识别匹配,但是对于低反射率物体即使投影了随机散斑之后出来的效果依旧很差,于是乎看看特征匹配的源码,看看能不能从原理上有所发现(用的knnMatch并且已经极线对准,可是效果在有的图上比较凉凉)。废话不多说,这篇博文讲的是看源码学习OpenCV,仿佛没找到比较好的文章,于是,自己看,写一个。后续有发现的话在后面补充。环境:OpenCV3.2源码