TOPSIS可翻译为逼近理想解排序,国内简称为优劣解距离TOPSIS是一种常用的综合评价方法,其能充分利用原始数据的信息,其结果能精确地反映各评价方案之间的距离一、模型介绍极大型指标(效益型指标) :越高(大)越好极小型指标(成本型指标) :越少(小)越好中间型指标:越接近某个值越好区间型指标:落在某个区间最好构造计算评分的公式:(x-min)/(max-min)【只有一
在机器学习中,数据归一化是非常重要,它可能会导致模型坏掉或者训练出一个很奇怪的模型,为了让机器学习的模型更加适合实际情况,需要对数据进行归一化处理。1.机器学习中常用的归一化方法:2. 不同归一化方法分析:2.1 线性变换和极差(线性归一化)将原始数据线性化的方法转换到[0 1]的范围,该方法实现对原始数据的等比例缩放。通过利用变量取值的最大值和最小值(或者最大值)将原始数据转换为界于某一特定范
TOPSIS(优劣解距离)\1. 构造计算评分的公式:(x-min)/(max-min)\2. 统一指标类型 转化为极大型 指标正向化极小型指标转换公式:max-x中间型指标区间型指标:\3. 正向化矩阵标准化\4. 计算得分并归一化:x-min/(max-x)+(x-min)\5. 带权重的TOPSIS \6. 代码: %% 第一步:把数据复制到工作区,并将这个矩阵命名为X % (1
转载 2024-05-16 15:05:43
137阅读
1 内容介绍TOPSIS用于研究评价对象与‘理想解’的距离情况,结合‘理想解’(正理想解和负理想解),计算得到最终接近程度C值。TOPSIS核心在于TOPSIS,但在计算数据时,首先会利用值计算得到各评价指标的权重,并且将评价指标数据与权重相乘,得到新的数据,利用新数据进行TOPSIS研究。通俗地讲,TOPSIS是先使用得到新数据newdata(数据成计算得到的权重)
目录一.函数相关1.函数定义:function2.调用文件:source3. Call4.Recall5.browser6.debug和undebug7.trace8.traceback9.options10.missing11.nargs12.stop13.指定退出时执行的表达式14.expression和eval15.system.time16. invisible17.menu18
学习内容:基于TOPSIS模型的修正学习时间:2020.12.10学习产出:TOPSIS需要准确,还需要分别乘以各指标对应的权重,我们可以使用层次分析来获取指标的权重,但是层次分析太过于主观,所以这里我想介绍一下新学的方法——,来对TOPSIS进行一个权重的附加。1.的计算步骤 ①判断输入的矩阵是否存在负数,如果有则重新标准化区间②计算第j项指标下第i个样本所占的比重,并将
TOPSIS是一种组内综合评价方法,能充分利用原始数据的信息,其结果能精确地反映各评价方案之间的差距。 ①基本过程为归一化后的原始数据矩阵; ②采用余弦找出有限方案中的最优方案和最劣方案;然后分别计算各评价对象与最优方案和最劣方案间的距离; ③获得各评价对象与最优方案的相对接近程度,依次最为评价优劣的依据。 优点:该方法对数据分布及样本含量没有严格限制,数据计算简单易行。原始数据: 共有n个待
TOPSIS是多目标优化的一种数学方法,与灰色关联度分析分析类似,通过对实施的方案中的各个因素进行打分,而TOPSIS是计算每个实施方案中与最优方案与最劣方案的距离,得到评价对象与最优方案的接近程度,作为评价优劣的依据,通常情况下,系数最大的是最优解。TOPSIS分析基本步骤如下:我们在分析中使用的数据是来自实验的结果,具体的试验方案就是一个代号,不参与讨论,得到这样n次实验,m个实
Topsis(Technique for Order Preference by Similarity to Ideal Solution)可翻译为逼近理想解排序,国内常简称为优劣解距离Topsis是一种常用的综合评价方法,其能充分利用原始数据的信息, 其结果能精确地反映各评价方案之间的差距。在之前,我们学习过层次分析(AHP)。其中,层次分析模型的局限性是需要我们构造判断矩阵,这
## Topsis概述 在多属性决策分析中,TOPSIS法经常被一起使用,以帮助决策者在多个选择中做出最佳决策。用于确定各个评价指标的权重,而TOPSIS法则用于根据这些权重对各个选项进行评分。 ### 基于信息的概念,利用指标的数据分布特征来计算权重。信息越大,表示该指标的数据分散程度越高,其权重越小;反之,越小,权重越大。 ### TOPSIS
原创 7月前
114阅读
目录 前言一、TOPSIS(优劣解距离)1.模型原理2.建模步骤二、模型实现第一步:将原始矩阵正向化第二步:正向化矩阵标准化第三步:计算得分并归一化四、TOPSIS模型的总结与扩展总结扩展五、1.信息的定义2.计算步骤六、模型总结与扩展总结扩展七、参考代码 前言本文大部分是对于数学建模清风老师的课程学习总结归纳而来,我的理解可能有错误,大家发现错误可以在评论区批评指正,课程地
目录1.TOPSIS介绍2. 计算步骤(1)数据标准化(2)得到加权后的矩阵(3)确定正理想解和负理想解 (4)计算各方案到正(负)理想解的距离(5)计算综合评价值3.实例研究 3.1 导入相关库3.2 读取数据3.3 读取行数和列数3.4  数据标准化3.5 得到信息 3.6 计算权重3.7 计算权重后的数据3.8 得到最大值最小值距离3.9 计算评分
转载 2023-09-29 20:08:57
780阅读
1评论
前言:昨天写了一篇的文章,我想可能有部分数模小白们只是根据公式来机械的实现代码,而并没有很好的理解算法的内涵,所以我想用比较通俗易懂的方法来解释这些算法。希望能够帮助到同样热爱数模的同学们,我们一起学习,一起进步!topsis,又称优劣解距离,是数学建模中很经典的方法。一.正向化同一样,我们需要进行数据的规范化处理,并且这里了解到了对多种指标的处理方法:上面这些公式需要在编程的时候
决策树是一个简单易用的机器学习算法,具有很好的实用性。在风险评估、数据分类、专家系统中都能见到决策树的身影。决策树其实是一系列的if-then规则的集合,它有可读性良好,分类速度快等优点。下面是用C4.5算法生成的决策树(未进行剪枝),训练数据集:irisTrain.txt ,测试数据集:irisTest.txt 。全部数据集和代码下载地址:Codes & datasets 。#-*- c
一、应用通俗地讲,TOPSIS是先使用得到新数据newdata(数据成计算得到的权重),然后利用新数据newdata进行TOPSIS研究。二、操作SPSSAU操作(1)点击SPSSAU综合评价里面的‘TOPSIS’按钮。如下图(2)拖拽数据后点击开始分析三、数据处理四、案例背景  当前有6个国家经济技术开发区,分别在政务系统的4个指标上的评分值。数字越大表示指标越
主要解决多指标评价模型首先来看topsis,考虑一种类型数据首先正向化,比如都改成越大越好(如果越小越好?max - x;在某个区间内最好?中间型指标?)然后标准化,把原式数据改成0~1且和为1的数据当只有一种数据时:有了这个公式,就可以拓展到高维了但是这样有个问题,每种数据的占比可能不同,如何赋?需要用到优化。是一种依靠数据本身来赋的方法,通过引入“”的概念来进行步骤:(Yij
对暑假建模训练题给出了基于topsis的python代码实现:import numpy as np import xlrd import pandas as pd def read(file): wb = xlrd.open_workbook(filename=file) #打开文件 sheet = wb.sheet_by_index(0) #通过索引获取表格
最近在学习数学建模,在B站发现一个特别不错的课程,讲的很全面,常考的算法都有涉及到:清风数学建模本文将结合介绍TOPSIS,并将淡化原理的推导,更侧重于具体应用。TOPSIS概述TOPSIS(优劣解距离)是一种常用的综合评价方法,能充分利用原始数据的信息,其结果能精确地反映各评价方案之间的差距。同时TOPSIS也可以结合使用确定各指标所占的权重。基本过程一、统一指标类型常见的
import os import pandas as pd import numpy as np from sklearn.preprocessing import MinMaxScaler scaler = MinMaxScaler() """ 是根据指标所含信息有序程度的差异性来确定指标权重的客观赋方法' 用于度量不确定性,仅依赖于数据本身的离散程度; 指标的离散程度越大则值越大,
转载 2023-08-28 20:46:18
377阅读
目录一、概念二、基于python的2.1步骤 mapminmax介绍2.2例题 整体代码三、基于MATLAB的3.1例题2.2 某点最优型指标处理整体代码 一、概念1.1相关概念是一种客观赋值方法。在具体使用的过程中,根据各指标的变异程度,利用信息计算出各指标的,再通过对各指标的权重进行修正,从而得到较为客观的指标权重。一般
  • 1
  • 2
  • 3
  • 4
  • 5