CART 算法,英文全称叫做 Classification And Regression Tree,中文叫做分类回归树。ID3 和 C4.5 算法可以生成二叉树或多叉树,而 CART 只支持二叉树。同时 CART 决策树比较特殊,既可以作分类树,又可以作回归树。什么是分类树,什么是回归树呢?1.分类树可以处理离散数据,也就是数据种类有限的数据,它输出的是样本的类别,而回归树可以对连续型的数值进行预
转载
2024-04-15 13:57:14
104阅读
本笔记中原始数据及代码均来源于李东风先生的R语言教程,在此对李东风先生的无私分享表示感谢。某些非线性关系可以通过对因变量和自变量的简单变换变成线性回归模型。 例如, 彩色显影中, 染料光学密度Y与析出银的光学密度x有如下类型的关系这不是线性关系。两边取对数得令则为线性关系。 从n组数据得到变换的数据对变换后的数据建立线性回归方程反变换得则有
转载
2023-06-25 12:42:37
85阅读
最近我们被客户要求撰写关于洛伦兹曲线的研究报告,包括一些图形和统计输出。 洛伦兹曲线来源于经济学,用于描述社会收入不均衡的现象。将收入降序排列,分别计算收入和人口的累积比例。 本文,我们研究收入和不平等。我们从一些模拟数据开始> (income=sort(income))
[1] 19246 23764 53237 61696 218835为什么说这个样本中存在不平等?如果我们看一下
树回归当回归的数据呈现非线性时,就需要使用树回归。树回归的基本逻辑获得最好的切分特征和切分特征值 遍历所有特征 针对某一特征,遍历该特征的所有值 针对某一特征值,进行划分数据,计算出划分数据之后的总方差, 若总方差最小,记下特征和特征值 当遍历完所有特征后,就能够获得最小方差的特征和特征值,并以此作为树的结点,划分左右子树,若没有特征,就返回特征值左子树为大于等于特征值的
转载
2024-03-28 16:55:31
88阅读
决策树(Disicion tree) A decision tree is a flowchart-like structure in which each internal node represents a "test" on an attribute (e.g. whether a coin flip comes up heads or tails), each bran
转载
2024-03-01 15:12:05
60阅读
1 CART,又名分类回归树CART,分类回归树,是几乎所有复杂决策树算法的基础,有以下特点:(1)CART是一棵二叉树; (2)CART既能是分类树,又能是回归树,由目标任务决定; (3)当CART是分类树时,采用GINI值作为结点分裂的依据;当CART是回归树时,采用MSE(均方误差)作为结点分裂的依据;2 分类树和回归树的区别?针对分类任务,就是分类树;针对回归任务,就是回归树。分类任务:预
转载
2024-03-26 11:08:30
65阅读
1.分类树 以C4.5分类树为例,C4.5分类树在每次分枝时,是穷举每一个feature的每一个阈值,找到使得按照feature<=阈值,和feature>阈值分成的两个分枝的熵最大的阈值(熵最大的概念可理解成尽可能每个分枝的男女比例都远离1:1),按照该标准分枝得到两个新节点,用同样方法继续分枝直到所有人都被分入性别唯一的叶子节点,或达到预设的终止条件,若最终叶子节点中的性别不唯一,
转载
2024-06-19 06:52:01
33阅读
CART(classification and regression trees)树回归优点:可对复杂和非线性的数据建模;缺点:结果不易理解;适用于:数值型和标称型。构建树函数createTree()的伪代码:选择最好的划分方式(得到最佳划分的特征与阈值):用于回归树和模型树
如果该节点不能再分,将该节点存为叶节点
执行二元划分
在右子树调用createTree()函数
在左子树调用createT
转载
2024-04-02 08:30:06
34阅读
目录 回归树理论解释算法流程ID3 和 C4.5 能不能用来回归?回归树示例References 说到决策树(Decision tree),我们很自然会想到用其做分类,每个叶子代表有限类别中的一个。但是对于决策树解决回归问题,一直是一知半解,很多时候都是一带而过。对于一个回归问题,我们第一时间想到的可能就是线性回归(linear regression),当线性回归不好的时候,可能想着用 SV
转载
2024-05-05 22:30:30
83阅读
上一章介绍的线性回归,创建的模型需要拟合所有样本点(局部加权线性回归除外)。当数据拥有众多特征并且特征之间关系十分复杂时,构建全局模型的就非常困难,且实际生活中很多问题都是非线性的,不可能使用全局线性模型来拟合任何数据。 那么有一种方法,将数据集切分成很多份容易建模的数据,然后利用线性回归技术来建模,如果切分后仍然难以模拟线性模型就继续切分。这种切分方式,树结构和回归的结合。 本章介绍
转载
2024-06-02 23:28:49
67阅读
之前线性回归创建的模型需要拟合所有的样本点,但数据特征众多,关系复杂时,构建全局模型就很困难。之前构建决策树使用的算法是ID3。ID3 的做法是每次选取当前最佳的特征来分割数据,并按照该特征的所有可能取值来切分。也就是说,如果一个特征有 4 种取值,那么数据将被切分成 4 份。一旦按照某特征切分后,该特征在之后的算法执行过程中将不会再起作用,所以有观点认为这种切分方式过于迅速。另外一种方法是二元切
转载
2024-06-24 17:07:20
65阅读
回归树之前的博客 介绍了决策树算法在分类问题上面的应用,有提到ID3算法,C4.5算法和CART算法,其中CART(Classification And Regression Tree)分类回归树既可以用于分类,也可以用于回归,当用于分类的时候,CART树中每个叶子结点代表一个类别,在回归问题中,CART树中每个叶子结点代表一个预测值,其是连续的。这里针对CART在回归问题上面的应用,进
转载
2024-05-21 11:01:43
43阅读
一、引言这一节我们来介绍模型树以及进行一个简单的树回归的项目实战二、模型树2.1 模型树简介回归树的叶节点是常数值,而模型树的叶节点是一个回归方程。用树来对数据建模,除了把叶节点简单地设定为常数值之外,还有一种方法是把叶节点设定为分段线性函数,这里所谓的 分段线性(piecewise linear) 是指模型由多个线性片段组成。我们看一下图中的数据,如果使用两条直线拟合是否比使用一组常数来建模好呢
概要本部分介绍 CART,是一种非常重要的机器学习算法。
基本原理
CART 全称为 Classification And Regression Trees,即分类回归树。顾名思义,该算法既可以用于分类还可以用于回归。克服了 ID3 算法只能处理离散型数据的缺点,CART 可以使用二元切分来处理连续型变量。二元切分法,即每次把数据集切分成两份,具体地处理方法是:如果特征值大
转载
2024-04-23 15:25:15
57阅读
作为机器学习的小白和matlab的小白自己参照 python的 《机器学习实战》 写了一下分类回归树,这里记录一下。关于决策树的基础概念就不过多介绍了,至于是分类还是回归。。我说不清楚。。我用的数据集是这个http://archive.ics.uci.edu/ml/datasets/Abalone 就是通过一些属性来预测鲍鱼有多少头,下面看一下Length / continuous /
转载
2024-05-06 11:32:24
86阅读
1.bootstrap 在原始数据的范围内作有放回的再抽样M个, 样本容量仍为n,原始数据中每个观察单位每次被抽到的概率相等, 为1/n , 所得样本称为Bootstrap样本。于是可得到参数θ的一个估计值θ^(b),这样重复若干次,记为B 。为了可以避免一些误差点对少量树的决策影响。 2.决策树 : 信息熵: Ent(D
转载
2024-07-12 13:36:58
38阅读
回归树理论与波士顿房价案例一、回归树理论(1)回归树(2)回归树的建立(3)基于回归树的预测(4)剪枝二、K 近邻(回归)具体案例操作参考文献 一、回归树理论(1)回归树当数据拥有众多特征并且特征之间关系复杂时,构建全局模型变得困难而笨拙,并且很多实际问题都是非线性的,不可能使用全局线性模型来拟合任何数据。一种可行的方法是将数据集切分成很多份易建模的数据,然后利用线性回归技术来建模和拟合。如果首
转载
2024-08-27 14:33:10
47阅读
分类回归树(CART,Classification And Regression Tree)也属于一种决策树,上回文我们介绍了基于ID3算法的决策树。作为上篇,这里只介绍CART是怎样用于分类的。 分类回归树是一棵二叉树,且每个非叶子节点都有两个孩子,所以对于第一棵子树其叶子节点数比非叶子节点数多1。 表1 名称 体温 表面覆盖 胎生 产蛋 能飞 水生 有腿 冬眠 类标记 人 恒温 毛发 是 否
转载
2024-05-23 21:57:43
33阅读
CART算法的树回归:返回的每个节点最后是一个最终确定的平均值。#coding:utf-8
import numpy as np
# 加载文件数据
def loadDataSet(fileName): #general function to p
原创
2015-09-16 21:36:17
2334阅读
# 用rpart进行决策树建模
![R语言Rpart](
## 简介
在机器学习和数据挖掘领域,决策树是一种常用的建模方法。它可以根据一系列特征和标签之间的关系,构建一个树形结构来进行预测和分类。R语言中提供了rpart包,可以方便地进行决策树的建模和预测。本文将介绍rpart的使用方法,并通过一个示例来演示如何使用rpart进行决策树建模。
## rpart包介绍
rpart是R语言中
原创
2023-10-13 08:13:03
217阅读