二分类对于一个二分类问题,比如我们有一个样本,有两个不同的模型对他进行分类,那么它们的输出都应该是一个二维向量,比如:模型一的输出为:pred_y1=[0.8,0.2] 模型二的输出为:pred_y2=[0.6,0.4]需要注意的是,这里的数值已经经过了sigmoid激活函数,所以0.8+0.2=1,比如样本的真实标签是:true_y=[1,0]现在我们来求这两个模型对于这一个类别的分类损失,怎么
  排序一直是信息检索的核心问题之一, Learning to Rank(简称LTR)用机器学习的思想来解决排序问题(关于Learning to Rank的简介请见我的博文Learning to Rank简介)。LTR有三种主要的方法:PointWise,PairWise,ListWise. RankNet是一种Pairwise方法, 由微软研究院的Chris Burges等人在2005
作者:chen_h 当我们要使用神经网络来构建一个多分类模型时,我们一般都会采用 softmax 函数来作为最后的分类函数。softmax 函数对每一个分类结果都会分配一个概率,我们把比较高的那个概率对应的类别作为模型的输出。这就是为什么我们能从模型中推导出具体分类结果。为了训练模型,我们使用 softmax 函数进行反向传播,进行训练。我们最后输出的就是一个 0-1 向量。在这篇文章中,我
1. 引言 上一节深度学习与计算机视觉系列(3)_线性SVM与SoftMax分类器中提到两个对图像识别至关重要的概念:用于把原始像素信息映射到不同类别得分的得分函数/score function用于评估参数W效果(评估该参数下每类得分和实际得分的吻合度)的损失函数/loss function 其中对于线性SVM,我们有:得分函数f(xi,W)=Wxi损失函数L=1N∑i∑j≠yi[max(0,
文章目录1、nn.Parameter() 模型参数包装2、torch.Variable3、torch.Tensor4、Buffer参考链接 1、nn.Parameter() 模型参数包装Tensor的一种,常被用于模块参数(module parameter)。Parameters(参数) 是 Tensor 的子类。 A kind of Tensor that is to be considere
转载 2024-04-09 19:50:54
62阅读
学习过程知识粗略记录,用于个人理解和日后查看 包导入 import torch from torch import nn MSELoss-均方差损失 常用于回归问题中 对于每一个输入实例都只有一个输出值,把所有输入实例的预测值和真实值见的误差求平方,然后取平均 定义:class torch.nn.M ...
转载 2021-08-19 15:52:00
402阅读
2评论
一个损失函数需要一对输入:模型输出和目标,然后计算一个值来评估输出距离目标有多远。loss = criteri
原创 2023-05-18 17:14:58
116阅读
这次是关于损失函数的使用pytorch编写哦~~这里对损失函数的类别和应用场景,常见的损失函数,常见损失函数的表达式,特性,应用场景和使用示例
原创 2024-07-30 15:00:53
129阅读
在数据科学和机器学习领域,R²(决定系数)是一个重要的统计指标,用于评估回归模型的拟合程度。在Python中计算R²值的函数广泛应用于模型评估。本文将详细探讨如何计算R²函数,包括版本对比、迁移指南、兼容性处理、实战案例、排错指南和性能优化。 ## 版本对比 ### 兼容性分析 随着Python及其相关库的不断更新,计算R²的方式和所依赖的库版本之间存在一定的差异。以下是Python及相关库在不
原创 6月前
24阅读
# Python中的polyfit函数R2的实现方法 ## 简介 作为一名经验丰富的开发者,你要教导一位刚入行的小白如何实现"python polyfit函数 R2"。Polyfit函数在Python中是用来进行多项式拟合的函数R2则是用来评估拟合效果的指标。本文将指导小白如何使用polyfit函数并计算R2值。 ### 流程图 ```mermaid flowchart TD A[开
原创 2024-05-10 07:05:38
452阅读
对数损失(Logarithmic Loss,Log Loss)是一种用于衡量分类模型的损失函数。它通常用于二元分类问题,但也可以用于多元分类问题。在二元分类问题中,Log Loss 基于预测概率和实际标签的对数误差来计算损失。对于一个样本 i,假设它的实际标签是 yi(取值为 0 或 1),模型预测的概率为 y^i(0 ≤ y^i ≤ 1),则它的
损失函数(Loss Function) - 知乎1、什么是损失函数?一言以蔽之,损失函数(loss function)就是用来度量模型的预测值f(x)与真实值Y的差异程度的运算函数,它是一个非负实值函数,通常使用L(Y, f(x))来表示,损失函数越小,模型的鲁棒性就越好。-损失函数:用于衡量'单个样本点'预测值与实际值的偏离程度。 -风险函数:用于衡量'样本点平均意义'下的好坏,就是说要除以ba
NLP分类任务可以分为单标签和多标签,在进行这些分类任务的时候,怎么选择损失函数呢?一、单标签分类任务单标签分类任务很简单,就是一个样本只有一个标签;进一步,根据类别的多少可以分为二分类和多分类。1、二分类任务只有2个类别,非A即B,那么这种情况下,可以采用如下的方式:a、sigmoid激活函数+BCELoss训练代码实现方式如下#output [B,C] output = torch.sigmo
python+Scikit-Learn线性回归及损失函数环境:(ubuntu18.04LTS)Anaconda3+python3.7.4+Scikit-Learn一、线性回归监督学习 机器学习主要分为监督学习、非监督学习和强化学习。其中,监督学习主要包括:分类(Classification)、回归(Regression)和排序(Ranking)。监督学习是通过已知的训练数据集,训练得到数据集中特征
均方误差(Mean Squared Error,MSE):均方误差是最常见的图像恢复损失函数之一。它计算恢复图像与原始图像之间的像素级别差异的平均值的平方。MSE 损失函数趋向于使恢复图像的像素值与原始图像的像素值尽可能接近。均方根误差(Root Mean Squared Error,RMSE):均方根误差是均方误差的平方根,它衡量恢复图像与原始图像之间的平均像素级别差异。RMSE 损失函数也常用
一.线性回归LinearRegression类就是我们平时所说的普通线性回归,它的损失函数如下所示: 对于这个损失函数,一般有梯度下降法和最小二乘法两种极小化损失函数的优化方法,而scikit-learn中的LinearRegression类使用的是最小二乘法。通过最小二乘法,可以解出线性回归系数θ为:验证方法:LinearRegression类并没有用到交叉验证之类的验证方法,需要我们自己把数据
转载 2023-10-08 01:23:33
226阅读
1、sigmoid函数 sigmoid函数,也就是s型曲线函数,如下: 函数: 导数:  上面是我们常见的形式,虽然知道这样的形式,也知道计算流程,不够感觉并不太直观,下面来分析一下。1.1 从指数函数到sigmoid 首先我们来画出指数函数的基本图形: 从上图,我们得到了这样的几个信息,指数函数过(0,1)点,单调递增/递减,定义域为(−∞,+∞),值域为(0,+∞
1 focal loss的概述焦点损失函数 Focal Loss(2017年何凯明大佬的论文)被提出用于密集物体检测任务。当然,在目标检测中,可能待检测物体有1000个类别,然而你想要识别出来的物体,只是其中的某一个类别,这样其实就是一个样本非常不均衡的一个分类问题。而Focal Loss简单的说,就是解决样本数量极度不平衡的问题的。说到样本不平衡的解决方案,相比大家是知道一个混淆矩阵的f1-sc
转载 2024-01-17 16:32:34
161阅读
# 使用 PyTorch 实现 L2 损失函数的完整指南 L2损失函数,又称为均方误差(Mean Squared Error,MSE),是深度学习中常用的损失函数之一。它在回归问题中尤为重要,因为它能够衡量预测值与真实值之间的差距。今天,我们将逐步学习如何使用 PyTorch 实现 L2 损失函数。 ## 一、流程概述 下面是我们实现 L2 损失函数的流程概述: | 步骤 | 描述
原创 10月前
196阅读
# 使用L2损失函数进行PyTorch模型训练 ## 引言 在深度学习中,损失函数是模型训练过程中非常重要的一部分。L2损失函数(均方误差,MSE)是用于回归任务的一种常用损失函数。这篇文章将指导你如何在PyTorch中使用L2损失函数,通过一个简单的例子来实现模型训练。 ## 实现流程 下面是实现过程的总览,整个流程分为六个步骤。 | 步骤 | 描述
原创 10月前
333阅读
  • 1
  • 2
  • 3
  • 4
  • 5