文章目录一、前言二、基本原理(一) 无向权重图1、 邻接矩阵 W2、 度 D(二)相似矩阵/邻接矩阵 W1、ϵ-邻近法2、K邻近法3、全连接法(三)拉普拉斯矩阵(2) 拉普拉斯矩阵的性质(四) 无向图切图1、 子图与子图的连接权重2、 切图的目标函数(五) 谱聚类切图1、 RatioCut切图2、 Ncut切图三、谱聚类算法流程四、python实现五、sklearn库中的谱聚类使用六、谱聚类算法
转载
2023-12-06 16:28:20
408阅读
在之前的文章里,介绍了比较传统的K-Means聚类、Affinity Propagation(AP)聚类、比K-Means更快的Mini Batch K-Means聚类以及混合高斯模型Gaussian Mixture Model(GMM)等聚类算法,今天介绍一个比较近代的一类算法——Spectral Clustering 中文通常称为“谱聚类”。Spectral Clustering(谱聚类,有时
转载
2023-11-30 18:07:57
113阅读
谱聚类是基于矩阵SVD分解的一种聚类方法,就矩阵分解而言,并没有什么新奇的,但是利用矩阵分解来解决问题的思路值得研究一下
解决的问题 实现图的最佳分割 优化目标切割目标,切割成本最小,分割后的数据规模差不多大。通俗的说,就是集群内部,节点联系尽量紧密,群集外部连接越少。 解决过程步骤一建立拉普拉斯矩阵(度矩阵-连接矩阵)这个矩阵第一个巧妙之处在于它的最小特征向量,这样后面的特征向量因为
转载
2024-04-14 06:27:50
36阅读
本文将对谱聚类的知识进行一些总结。目的在于记录自己的学习经历,当作自己的笔记来写。写得不好的地方欢迎交流指正。谱聚类是一种非常流行的聚类算法,它不需要对簇的类型有很强的假设,可以聚类任何形状的数据。一、简要介绍 由于网上有许多的关于谱聚类的介绍,所以我这里只是简要介绍一下谱聚类。聚类是一种对数据分析非常有用的工具,它
转载
2023-11-16 20:21:12
117阅读
#进行SpectralClustering
#查看默认的谱聚类效果
y_pred = SpectralClustering().fit_predict(cluster_data)
print("Calinski-Harabasz Score", metrics.calinski_harabaz_score(cluster_data, y_pred))#默认使用的是高斯核,需要对n_cluster
转载
2023-06-21 21:49:46
218阅读
聚类根据给定的样本数据集定义一个描述成对数据点相似度的亲合矩阵,并且计算矩阵的特征值和特征向量 , 然后选择合适 的特征向量聚类不同的数据点。谱聚类可以在任意形状的样本空间聚类,且收敛于全局最优解,因此在处理高维数据方面存在着明显优势。总的来说,该算法存在一些不足之处。算法在聚类之前需要设置具体应用的尺度参数,通常需要一些经验。初始聚类中心对整个聚类效果影响很
转载
2023-06-21 21:50:04
254阅读
谱聚类(spectral clustering)是一种基于图论的聚类算法,第一步是构图:将数据集中的每个对象看做空间中的点V,将这些点之用边E连接起来,距离较远的两个点之间的边权重值较低、距离较近的两个点之间的边权重值较高,这样就构成了一个基于相似度的无向权重图G(V,E)。第二步是切图:按照一定的切边
转载
2024-01-30 07:01:32
248阅读
谱聚类是一种将数据的相似矩阵的谱应用于降维的技术。它是有用且易于实现的聚类方法。 什么是谱聚类?给你若干个博客,让你将它们分成K类,你会怎样做?想必有很多方法,本文要介绍的是其中的一种——谱聚类。聚类的直观解释是根据样本间相似度,将它们分成不同组。谱聚类的思想是将样本看作顶点,样本间的相似度看作带权的边,从而将聚类问题转为图分割问题:找到一种图分割的方法使得连接不同组的边的权
最近在做SOM神经网络模型的项目,之前一直在用Matlab的工具箱,一直想转成Python的代码来实现,就到处找,结果还真有SOM相关的库。
自组织地图MiniSom 是自组织映射 (SOM) 的简约和基于 Numpy 的实现。SOM 是一种人工神经网络,能够将高维数据项之间复杂的非线性统计关系转换为低维显示器上的简单几何关系。Minisom 旨在让研究人员能够轻松地在其基础上进行构建,并
转载
2023-08-05 22:51:12
0阅读
谱聚类(Spectral Clustering,SC)是一种基于图论的聚类方法,将带权无向图划分为两个或两个以上的最优子图,使子图内部尽量相似,而子图间距离尽量远。能够识别任意形状的样本空间且收敛于全局最优解,基本思想是利用样本数据的相似矩阵(拉普拉斯矩阵)进行特征分解后得到的特征向量进行聚类。对于item-user矩阵,如果要将item进行聚类我们可以采用k-means聚类,复杂度为O(tknm
转载
2023-08-21 14:40:04
102阅读
前面讲到的线性回归和逻辑回归的数据样本都是确定了Y值的,通俗一点来讲就是:从给定的训练数据集中学习出一个函数(模型参数),当新的数据到来时,可以根据这个函数预测结果。所以线性回归和逻辑回归都是监督学习今天要讲的聚类分析是无监督学习,无监督学习就是:输入数据没有被标记,也没有确定的结果。样本数据类别未知,需要根据样本间的相似性对样本集进行分类(聚类,clustering)试图使类内差距
转载
2024-07-30 23:23:49
23阅读
机器学习的主要领域之一是无监督学习领域。主要思想是在我们的数据中找到一种模式,而不需要像监督学习那样的标签的先验知识。它通常通过将我们的数据聚类成组并尝试从聚类中推断出意义来实现。一种比较流行的算法是K均值算法(以及熟悉的EM算法)。在这个算法中,我们在迭代过程中调整K个质心来找到我们的clusters。听起来不错吧?但主要问题是:1)它假设数据的形状(圆球,径向基)。2)有时需要多次重启才能找到
转载
2024-05-30 09:00:36
89阅读
广义上来说,任何在算法中用到SVD/特征值分解的,都叫Spectral Algorithm。顺便说一下,对于任意矩阵只存在奇异值分解,不存在特征值分解。对于正定的对称矩阵,奇异值就是特征值,奇异向量就是特征向量。传统的聚类算法,如K-Means、EM算法都是建立在凸球形样本空间上,当样本空间不为凸时,算法会陷入局部最优,最终结果受初始参数的选择影响比较大。而谱聚类可以在任意形状的样本空间
转载
2023-08-21 15:36:30
190阅读
聚类 在了解谱聚类之前,首先需要知道聚类,聚类通俗的讲就是将一大堆没有标签的数据根据相似度分为很多簇(就是一坨坨的),将相似的聚成一坨,不相似的再聚成其他很多坨。一般的聚类算法存在的问题是k值的选择(就是簇的数量事先不知道),相似性的度量(如何判断两个样本点是否相似),如何不陷入局部最优等问题,流行的算法有k-means等一系列算法。 谱聚类 顾名思义就是一种聚类算法,这个谱字应该指
转载
2023-06-21 21:57:16
78阅读
实验7: 谱聚类一、实验目的了解谱聚类的构建过程和代码实现,应用谱聚类解决简单的实际问题。二、实验准备安装python和pycharm,了解python基础编程和pycharm使用。三、实验内容基于程序中生成的数据,补充完整下面谱聚类算法相关程序,粘贴运行成功的结果截图,并给每行程序添加注释。import numpy as np
import matplotlib.pyplot as plt
fr
转载
2023-10-31 23:14:26
147阅读
谱聚类算法是目前最流行的聚类算法之一,其性能及适用场景优于传统的聚类算法如k-均值算法,本文对谱聚类算法进行了详细总结,内容主要参考论文《A Tutorial on Spectral Clustering》,下载链接:https://github.com/zhangleiszu/machineLearning,若对谱聚类算法有不理解的地方,欢迎交流。目录1. 谱聚类模型的优化思想2. 图的表示方法
转载
2023-09-06 12:28:47
53阅读
谱聚类算法(Spectral Clustering)谱聚类算法原理:###1.谱聚类是广泛使用的聚类算法,比起传统的K-means算法,谱聚类算法对数据分布的适用性更强,聚类效果也很优秀,计算量小,实现起来也不复杂。 具体原理 2.谱聚类是从图论中演化出来的算法,后来在聚类中得到广泛的应用。主要思想是把所有的数据看作空间中的点,这些点之间可以用边连接起来。距离较远的两个点之间的边权重值较低,反之,
转载
2023-10-13 12:55:49
176阅读
一,谱聚类原理谱聚类算法原理可以参考如下链接。这个视频推导出了拉普拉斯矩阵,但没有更新后续优化问题。可以搭配视频笔记食用:详细及全面讲解参考:谱聚类是从图论中演化出来的算法,后来在聚类中得到了广泛的应用。1,构图谱聚类过程主要有两步,第一步是构图,将采样点数据构造成一张网图,表示为G(V,E),V表示图中的点,E表示点与点之间的边,如下图: 图1 谱聚类构图(来源wiki)在
转载
2024-01-08 19:42:18
144阅读
文章目录基本原理sklearn中谱聚类的构造实战 基本原理谱聚类是一种基于图论的聚类方法,所谓图,就是将空间中的所有点连接起来,只要这些连接中出现了一个圈,就可以称之为图。如果把这些连线加上一个权重,就叫做加权图。如果连线越长则权重越小,连线越短则权重越大,然后把权重最小的边切断,使得一个图变成两个图,便完成了一次聚类,这就是谱算法的基本思路,而其基本流程,就是构图->切图。所以,问题来了
转载
2024-05-16 22:11:46
19阅读
1. 谱聚类 给你博客园上若干个博客,让你将它们分成K类,你会怎样做?想必有很多方法,本文要介绍的是其中的一种——谱聚类。 聚类的直观解释是根据样本间相似度,将它们分成不同组。谱聚类的思想是将样本看作顶点,样本间的相似度看作带权的边,从而将聚类问题转为图分割问题:找到一种...
转载
2013-11-11 17:39:00
183阅读
2评论