是基于矩阵SVD分解的一种方法,就矩阵分解而言,并没有什么新奇的,但是利用矩阵分解来解决问题的思路值得研究一下 解决的问题 实现图的最佳分割 优化目标切割目标,切割成本最小,分割后的数据规模差不多大。通俗的说,就是集群内部,节点联系尽量紧密,群集外部连接越少。 解决过程步骤一建立拉普拉斯矩阵(度矩阵-连接矩阵)这个矩阵第一个巧妙之处在于它的最小特征向量,这样后面的特征向量因为
#进行SpectralClustering #查看默认的效果 y_pred = SpectralClustering().fit_predict(cluster_data) print("Calinski-Harabasz Score", metrics.calinski_harabaz_score(cluster_data, y_pred))#默认使用的是高斯核,需要对n_cluster
转载 2023-06-21 21:49:46
218阅读
实验7: 一、实验目的了解的构建过程和代码实现,应用解决简单的实际问题。二、实验准备安装python和pycharm,了解python基础编程和pycharm使用。三、实验内容基于程序中生成的数据,补充完整下面算法相关程序,粘贴运行成功的结果截图,并给每行程序添加注释。import numpy as np import matplotlib.pyplot as plt fr
一,原理算法原理可以参考如下链接。这个视频推导出了拉普拉斯矩阵,但没有更新后续优化问题。可以搭配视频笔记食用:详细及全面讲解参考:是从图论中演化出来的算法,后来在中得到了广泛的应用。1,构图谱过程主要有两步,第一步是构图,将采样点数据构造成一张网图,表示为G(V,E),V表示图中的点,E表示点与点之间的边,如下图:  图1 构图(来源wiki)在
文章目录一、前言二、基本原理(一) 无向权重图1、 邻接矩阵 W2、 度 D(二)相似矩阵/邻接矩阵 W1、ϵ-邻近法2、K邻近法3、全连接法(三)拉普拉斯矩阵(2) 拉普拉斯矩阵的性质(四) 无向图切图1、 子图与子图的连接权重2、 切图的目标函数(五) 切图1、 RatioCut切图2、 Ncut切图三、算法流程四、python实现五、sklearn库中的使用六、算法
转载 2023-12-06 16:28:20
408阅读
上一篇博客中简单介绍了K均值算法,在本篇博客中介绍一下关于算法,简单谈一谈自己的心得。简单介绍一下算法算法建立在图理论基础上,与传统的算法相比,它具有能在任意形状的样本空间上且收敛于全局最优解的优点。该算法首先根据给定的样本数据集定义一个描述成对数据点相似度的亲合矩阵,并且计算矩阵的特征值和特征向量 , 然后选择合适 的特征向量不同的数据点。算法
# 如何实现算法的 Python 代码 (Spectral Clustering)是一种基于图论的算法,在许多应用中表现出色。它通过先在特征空间中构造一个相似度矩阵,然后对其进行特征分解,从而找到数据点的低维表示。本文将带你逐步实现算法的 Python 代码。 ## 流程步骤 为了便于理解,下面是实现的主要步骤: | 步骤 | 描述
原创 9月前
158阅读
      本文将对的知识进行一些总结。目的在于记录自己的学习经历,当作自己的笔记来写。写得不好的地方欢迎交流指正。是一种非常流行的算法,它不需要对簇的类型有很强的假设,可以任何形状的数据。一、简要介绍      由于网上有许多的关于的介绍,所以我这里只是简要介绍一下是一种对数据分析非常有用的工具,它
在之前的文章里,介绍了比较传统的K-Means、Affinity Propagation(AP)、比K-Means更快的Mini Batch K-Means以及混合高斯模型Gaussian Mixture Model(GMM)等算法,今天介绍一个比较近代的一算法——Spectral Clustering 中文通常称为“”。Spectral Clustering(,有时
# 使用PySpark实现 随着大数据时代的到来,如何高效地处理和分析海量数据成为了一个研究热点。(Spectral Clustering)是一种有效的算法,广泛应用于图像分割、社交网络分析等领域。本文将介绍如何使用PySpark实现,并提供代码示例和详细的流程图。 ## 什么是是一种基于图论的方法,它通过图的拉普拉斯矩阵的特征值分解,将数据映射到低维空
原创 10月前
59阅读
    根据给定的样本数据集定义一个描述成对数据点相似度的亲合矩阵,并且计算矩阵的特征值和特征向量 , 然后选择合适 的特征向量不同的数据点。可以在任意形状的样本空间,且收敛于全局最优解,因此在处理高维数据方面存在着明显优势。总的来说,该算法存在一些不足之处。算法在之前需要设置具体应用的尺度参数,通常需要一些经验。初始中心对整个效果影响很
转载 2023-06-21 21:50:04
254阅读
        (spectral clustering)是一种基于图论的算法,第一步是构图:将数据集中的每个对象看做空间中的点V,将这些点之用边E连接起来,距离较远的两个点之间的边权重值较低、距离较近的两个点之间的边权重值较高,这样就构成了一个基于相似度的无向权重图G(V,E)。第二步是切图:按照一定的切边
转载 2024-01-30 07:01:32
248阅读
是一种将数据的相似矩阵的应用于降维的技术。它是有用且易于实现的方法。  什么是?给你若干个博客,让你将它们分成K,你会怎样做?想必有很多方法,本文要介绍的是其中的一种——的直观解释是根据样本间相似度,将它们分成不同组。的思想是将样本看作顶点,样本间的相似度看作带权的边,从而将问题转为图分割问题:找到一种图分割的方法使得连接不同组的边的权
算法是目前最流行的算法之一,其性能及适用场景优于传统的算法如k-均值算法,本文对算法进行了详细总结,内容主要参考论文《A Tutorial on Spectral Clustering》目录1. 模型的优化思想2. 图的表示方法3. 邻接矩阵的表示方法4. 拉普拉斯矩阵定义及其属性5. 无向图切图的含义6. 算法原理7. 算法流程8. 拉普拉斯矩阵的选择9.
如果说 K-means 和 GMM 这些的方法是古代流行的算法的话,那么这次要讲的 Spectral Clustering 就可以算是现代流行的算法了,中文通常称为“”。由于使用的矩阵的细微差别,实际上可以说是一“”算法。Spectral Clustering 和传统的方法(例如 K-means)比起来有不少优点:和 K-me
(Spectral Clustering,SC)是一种基于图论的方法,将带权无向图划分为两个或两个以上的最优子图,使子图内部尽量相似,而子图间距离尽量远。能够识别任意形状的样本空间且收敛于全局最优解,基本思想是利用样本数据的相似矩阵(拉普拉斯矩阵)进行特征分解后得到的特征向量进行。对于item-user矩阵,如果要将item进行我们可以采用k-means,复杂度为O(tknm
最近在做SOM神经网络模型的项目,之前一直在用Matlab的工具箱,一直想转成Python代码来实现,就到处找,结果还真有SOM相关的库。 自组织地图MiniSom 是自组织映射 (SOM) 的简约和基于 Numpy 的实现。SOM 是一种人工神经网络,能够将高维数据项之间复杂的非线性统计关系转换为低维显示器上的简单几何关系。Minisom 旨在让研究人员能够轻松地在其基础上进行构建,并
广义上来说,任何在算法中用到SVD/特征值分解的,都叫Spectral Algorithm。顺便说一下,对于任意矩阵只存在奇异值分解,不存在特征值分解。对于正定的对称矩阵,奇异值就是特征值,奇异向量就是特征向量。传统的算法,如K-Means、EM算法都是建立在凸球形样本空间上,当样本空间不为凸时,算法会陷入局部最优,最终结果受初始参数的选择影响比较大。而可以在任意形状的样本空间
转载 2023-08-21 15:36:30
190阅读
机器学习的主要领域之一是无监督学习领域。主要思想是在我们的数据中找到一种模式,而不需要像监督学习那样的标签的先验知识。它通常通过将我们的数据成组并尝试从中推断出意义来实现。一种比较流行的算法是K均值算法(以及熟悉的EM算法)。在这个算法中,我们在迭代过程中调整K个质心来找到我们的clusters。听起来不错吧?但主要问题是:1)它假设数据的形状(圆球,径向基)。2)有时需要多次重启才能找到
  在了解之前,首先需要知道通俗的讲就是将一大堆没有标签的数据根据相似度分为很多簇(就是一坨坨的),将相似的成一坨,不相似的再成其他很多坨。一般的算法存在的问题是k值的选择(就是簇的数量事先不知道),相似性的度量(如何判断两个样本点是否相似),如何不陷入局部最优等问题,流行的算法有k-means等一系列算法。   顾名思义就是一种算法,这个字应该指
转载 2023-06-21 21:57:16
78阅读
  • 1
  • 2
  • 3
  • 4
  • 5