是一种将数据的相似矩阵的应用于降维的技术。它是有用且易于实现的方法。  什么是?给你若干个博客,让你将它们分成K,你会怎样做?想必有很多方法,本文要介绍的是其中的一种——的直观解释是根据样本间相似度,将它们分成不同组。的思想是将样本看作顶点,样本间的相似度看作带权的边,从而将问题转为图分割问题:找到一种图分割的方法使得连接不同组的边的权
        (spectral clustering)是一种基于图论的算法,第一步是构图:将数据集中的每个对象看做空间中的点V,将这些点之用边E连接起来,距离较远的两个点之间的边权重值较低、距离较近的两个点之间的边权重值较高,这样就构成了一个基于相似度的无向权重图G(V,E)。第二步是切图:按照一定的切边
转载 2024-01-30 07:01:32
248阅读
这组文章作为读完Ulrike von Luxburg的论文 A Tutorial on Spectral Clustering(2007)的一个总结。论文的讨论范围为三种不同的算法: 1. unnormalized spectral clustering 2. Shi and Malik的算法(2000) 3. NJW算法(2002)其中算法1使用**未经过标准化的**Laplaci
前言:以前只是调用过算法,我也不懂为什么各家公司都问我一做文字检测的这个算法具体咋整的,没整明白还给我挂了哇擦嘞?讯飞还以这个理由刷本宝,今天一怒把它给整吧清楚了,下次谁再问来!说不晕你算我输!一、解释:   是一种基于图论的算法,主要思想是把所有的数据看做空间中的点,这些点之间用带权边连接,距离越近权重越大,通过对这些点组成的图进行切割,让切图后的子图间的权重和尽
算法是目前最流行的算法之一,其性能及适用场景优于传统的算法如k-均值算法,本文对算法进行了详细总结,内容主要参考论文《A Tutorial on Spectral Clustering》,下载链接:https://github.com/zhangleiszu/machineLearning,若对算法有不理解的地方,欢迎交流。目录1. 模型的优化思想2. 图的表示方法
小白入门算法原理与实现小白入门算法原理与实现1. 是什么?2.步骤2.1 构图2.2 切图2.2.1RatioCut2.2.2Ncut3实现 小白入门算法原理与实现文章结构主要分为下面三个部分 ①是什么 ②怎么进行应用例子1. 是什么?首先回顾一下的概念::对大量未知标注的数据集,按数据的内在相似性将数据集划
是一种基于图论的方法,通过对样本数据的拉普拉斯矩阵的特征向量进行,从而达到对样本数据的母的。可以理解为将高维空间的数据映射到低维,然后在低维空间用其它算法(如KMeans,c-均值进行。相似图构造相似图,用来刻画数据点局部的近邻关系。顶点对应一个样本点。k-近邻图 如果是的近邻,那么和之间存在一条边。由于每个样本点的近邻情况不完全相同,因此这种方法构造的
转载 2024-03-17 10:05:48
150阅读
(spectral clustering)是广泛使用的算法,比起传统的K-Means算法对数据分布的适应性更强,效果也很优秀,同时的计算量也小很多,更加难能可贵的是实现起来也不复杂。在处理实际的问题时,个人认为是应该首先考虑的几种算法之一。下面我们就对算法原理做一个总结。1. 概述是从图论中演化出来的算法,后来在中得到了广泛的应用。它的主
转载 2024-04-02 18:05:05
23阅读
算法将数据集中的每个对象看作是图的顶点V,将顶点间的相似度量化作为相应顶点连接边E的权值,这样就得到一个基于相似度的无向加权图G(V, E),于是问题就可以转化为图的划分问题。基于图论的最优划分准则就是使划分成的子图内部相似度最大,子图之间的相似度最小。虽然根据不同的准则函数及映射方法,算法有着不同的具体实现方法,但是这些实现方法都可以归纳为下面三个主要步骤:1) 构建表示对象集
本文对其中的难懂的地方做一些备注 (spectral clustering)是广泛使用的算法,比起传统的K-Means算法对数据分布的适应性更强,效果也很优秀,同时的计算量也小很多,更加难能可贵的是实现起来也不复杂。在处理实际的问题时,个人认为是应该首先考虑的几种算法之一。下面我们就对算法原理做一个总结。1. 概述    是从图论中演化出来的
文章目录一、前言二、基本原理(一) 无向权重图1、 邻接矩阵 W2、 度 D(二)相似矩阵/邻接矩阵 W1、ϵ-邻近法2、K邻近法3、全连接法(三)拉普拉斯矩阵(2) 拉普拉斯矩阵的性质(四) 无向图切图1、 子图与子图的连接权重2、 切图的目标函数(五) 切图1、 RatioCut切图2、 Ncut切图三、算法流程四、python实现五、sklearn库中的使用六、算法
转载 2023-12-06 16:28:20
408阅读
(Spectral Clustering, SC)是一种基于图论的方法——将带权无向图划分为两个或两个以上的最优子图,使子图内部尽量相似,而子图间距离尽量距离较远,以达到常见的的目 的。其中的最优是指最优目标函数不同,可以是割边最小分割——如图1的Smallest cut(如后文的Min cut), 也可以是分割规模差不多且割边最小的分割——如图1的Best cut(如后文的Norm
算法(Spectral Clustering)算法原理:###1.是广泛使用的算法,比起传统的K-means算法算法对数据分布的适用性更强,效果也很优秀,计算量小,实现起来也不复杂。 具体原理 2.是从图论中演化出来的算法,后来在中得到广泛的应用。主要思想是把所有的数据看作空间中的点,这些点之间可以用边连接起来。距离较远的两个点之间的边权重值较低,反之,
 是从图论中演化出来的算法,后来在中得到了广泛的应用。它的主要思想是把所有的数据看做空间中的点,这些点之间可以用边连接起来。距离较远的两个点之间的边权重值较低,而距离较近的两个点之间的边权重值较高,通过对所有数据点组成的图进行切图,让切图后不同的子图间边权重和尽可能的低,而子图内的边权重和尽可能的高,从而达到的目的。 邻接矩阵W,它是由任意两点之间的权重值wij组成的矩阵。
转载 2024-01-04 13:47:34
67阅读
上一篇博客中简单介绍了K均值算法,在本篇博客中介绍一下关于算法,简单谈一谈自己的心得。简单介绍一下算法算法建立在图理论基础上,与传统的算法相比,它具有能在任意形状的样本空间上且收敛于全局最优解的优点。该算法首先根据给定的样本数据集定义一个描述成对数据点相似度的亲合矩阵,并且计算矩阵的特征值和特征向量 , 然后选择合适 的特征向量不同的数据点。算法
算法建立在图理论基础上,与传统的算法相比,它具有能在任意形状的样本空间上且收敛于全局最优解的优点。该算法首先根据给定的样本数据集定义一个描述成对数据点相似度的亲合矩阵,并且计算矩阵的特征值和特征向量 , 然后选择合适 的特征向量不同的数据点。算法最初用于计算机视觉 、VLS I 设计等领域, 最近才开始用于机器学习中,并迅速成为国际上机器学习领域的研究
转载 2024-05-21 11:28:11
47阅读
文章目录简介1. 准备工作1.1 邻接矩阵1.2 度矩阵1.3 拉普拉斯矩阵1.3.1 非归一化拉普拉斯矩阵1.3.2 归一化拉普拉斯矩阵1.4 相似图1.4.1 ϵ
是基于矩阵SVD分解的一种方法,就矩阵分解而言,并没有什么新奇的,但是利用矩阵分解来解决问题的思路值得研究一下 解决的问题 实现图的最佳分割 优化目标切割目标,切割成本最小,分割后的数据规模差不多大。通俗的说,就是集群内部,节点联系尽量紧密,群集外部连接越少。 解决过程步骤一建立拉普拉斯矩阵(度矩阵-连接矩阵)这个矩阵第一个巧妙之处在于它的最小特征向量,这样后面的特征向量因为
      本文将对的知识进行一些总结。目的在于记录自己的学习经历,当作自己的笔记来写。写得不好的地方欢迎交流指正。是一种非常流行的算法,它不需要对簇的类型有很强的假设,可以任何形状的数据。一、简要介绍      由于网上有许多的关于的介绍,所以我这里只是简要介绍一下是一种对数据分析非常有用的工具,它
#进行SpectralClustering #查看默认的效果 y_pred = SpectralClustering().fit_predict(cluster_data) print("Calinski-Harabasz Score", metrics.calinski_harabaz_score(cluster_data, y_pred))#默认使用的是高斯核,需要对n_cluster
转载 2023-06-21 21:49:46
218阅读
  • 1
  • 2
  • 3
  • 4
  • 5