TensorFlow这里简单总结一下TensorFlow的入门学习基础,作为TensorFlow学习之旅的启航。 张量(Tensor)TensorFlow 内部的计算都是基于张量的,张量是在我们熟悉的标量、向量之上定义的,详细的定义比较复杂,我们可以先简单的将它理解为一个多维数组:3 # 这个 0 阶张量就是标量,shape=[] [1., 2., 3.] # 这个 1 阶张量就是向量,sha
转载 2024-09-01 10:09:23
43阅读
tensorx = torch.rand(4,5) torch.save(x.to(torch.device('cpu')), "myTensor.pth") y = torch.load("myTensor.pth") print(y)list 保存到本地就是保存为.npy文件import numpy as np a = [(u'9000023330249', 1), (u'13142928
转载 2023-06-30 10:09:39
217阅读
张量什么是张量?一个数,一个数组,一个矩阵都是张量张量包含多个属性,下面我将进行介绍。 张量的维度,叫做轴(axis)。维度可以无限扩充。查看张量维度:>>> x.ndim标量(0D张量)对应的是数值,例如1,2,3等。向量(1D张量)我们传统理解上的向量是(0,1)、(256,256)等,但这里向量相当于所谓一维数组。>>> x = np.arra
转载 2023-08-14 11:30:59
91阅读
pytorch张量运算张量的简介生成不同数据类型的张量list和numpy.ndarray转换为TensorTensor与Numpy Array之间的转换Tensor的基本类型转换(float转double,转byte等)torch.arange()、torch.range()、torch.linspace的区别:张量的重排(reshape、squeeze、unsqueeze、permute、t
转载 2023-05-26 10:08:33
176阅读
目录一、张量概述:二、初始化张量:直接使用Python列表转化为张量:通过Numpy数组(ndarray)转换为张量:通过已有的张量生成新的张量:通过指定数据维度生成张量: 三、张量属性:四、张量的运算:1.张量的索引和切片:2.张量的拼接:3.张量的乘法和矩阵乘法:乘法(点乘):矩阵乘法(叉乘):4.自动赋值运算:五、Tensor和Numpy的相互转换:1.由tensor转换为ndar
转载 2023-06-19 18:58:18
615阅读
5. Tensor 分解张量的最大特征之一是可以被紧密地表示为分解形式,并且我们有强大的保证方法来得到这些分解。在本教程中,我们将学习这些分解形式以及如何进行张量分解。关于张量分解的更多信息,请参考1。5.1. Tensor 的 Kruskal 形式其思想是将张量表示为一阶张量的和, 也就是向量的外积的和。这种表示可以通过应用典型的Canonical Polyadic 分解(也称为CANDECOM
目录2.1 张量的数据类型2.2 张量的生成  (1)使用torch.tensor()函数生成张量  (2) torch.Tensor()函数(3)张量和Numpy数据相互转换(4)随机数生成张量(5)其他生成张量的函数2.3 张量操作   (1) 改变张量的形状   (2)获取张量中的元素(需要细化)2.4 张量计算
个人吐槽区:上一篇文章的学习是纯看书学的,后来发现这样有些看不进去,于是在B站上找了网课.......Element-wise operations(逐点运算)逐点运算,顾名思义,也就是两个同等规模的张量进行运算时,相同位置的数值进行同样的运算。举个栗子:import numpy as np >>> x = np.array([ 1, 2, 5, 3]) >>>
文章目录1. pytorch张量1.1 初始化张量1.2 张量类型1.3 创建随机值张量1.4 张量属性1.5 将张量移动到显存2. 张量运算2.1 与NumPy数据类型的转换2.2 张量的变形2.3 张量的自动微分 1. pytorch张量PyTorch最基本的操作对象是张量张量是PyTorch中重要的数据结构,可认为是一个高维数组。张量类似NumPy的数组(ndarray),与ndarra
转载 2023-10-11 10:15:38
141阅读
最近看的一篇paper需要的背景知识(可能略有删改)目录1.张量简介2.张量的定义与运算2.1 张量(Tensor)2.2  纤维(Fibre)2.3 切片(Slice)2.4 内积(Inner product)2.5 矩阵展开(Unfolding-Matricization)2.6 外积(Outer Product)2.7 Kronecker乘积(Kronecker Product)2
 一. 概念:张量、算子           张量(tensor)理论是数学的一个分支学科,在力学中有重要应用。张量这一术语起源于力学,它最初是用来表示弹性介质中各点应力状态的,后来张量理论发展成为力学和物理学的一个有力的数学工具。张量之所以重要,在于它可以满足一切物理定律必须与坐标系的选择无关的特性。张量概念是矢量概念的推广,矢量是一阶
转载 2024-07-04 17:52:56
210阅读
一. 概念:张量、算子张量张量分解是机器学习中十分重要的一种方法,常用于各类多维数据或参数的建模,可视为矩阵分解的高阶形式算子:算子是一个函数空间到函数空间上的映射O:X→X。广义上的算子可以推广到任何空间,如内积空间等。(百度百科)二. 使用pytorch实现张量运算1.2.1 创建张量首先引入pytorchimport torch1.2.1.1 指定数据创建张量(1)通过指定的Python
本文是讲解如何在Python中实现CP张量分解,包括张量分解的简要介绍。主要目的是专注于Python张量分解的实现。根据这个目标,我们将使用Python中提供的两个库(TensorLy和tensortools)实现张量分解,并使用Numpy(通过交替优化)实现张量分解的简单实现。此外,在重构误差和执行时间两方面对三种方法的结果进行比较。张量分解让我们简单地从标题中定义每个术语。张量张量是一个多
首先比较一下Python列表(list)、Numpy数组(ndarray)、Tensorflow张量(Tensor)之间的区别: >> Python列表: 元素可以使用不同的数据类型,可以嵌套 在内存中不是连续存放的,是一个动态的指针数组 读写效率低,占用内存空间大 不适合做数值计算
# Python 张量简介及其应用 ## 引言 在人工智能和深度学习的迅速发展中,"张量"这一术语日益频繁地出现在我们的视野中。张量是数据科学中的一种重要概念,它们是多维数组,能够存储和处理大量数据。在本篇文章中,我们将深入探讨什么是张量、如何在 Python 中使用张量,以及它们在机器学习中的应用。 ## 什么是张量? 在数学中,张量是一种可以表示标量、向量和更高维结构的数据对象。简单来
原创 2024-10-10 04:50:33
107阅读
1.背景介绍张量分解是一种常用的矩阵分解方法,主要应用于推荐系统、图像处理、自然语言处理等领域。在这篇文章中,我们将深入探讨张量分解的算法优化与实践,包括核心概念、算法原理、具体操作步骤、数学模型公式、代码实例等方面。1.1 张量分解的基本概念张量分解是一种矩阵分解方法,主要用于处理高维数据。在高维数据中,数据点之间可能存在复杂的关系,这些关系可以通过张量分解来挖掘。张量分解的核心思想是将高维数据
转载 2024-08-09 11:59:03
59阅读
Pytorch张量的拆分与拼接预览在 PyTorch 中,对张量 (Tensor) 进行拆分通常会用到两个函数:而对张量 (Tensor) 进行拼接通常会用到另外两个函数:1.张量的拆分torch.split函数torch.split(tensor, split_size_or_sections, dim = 0)按块大小拆分张量 tensor 为待拆分张量 dim 指定张量拆分的所在维度,即在第
        在Torch中,张量的操作非常重要,为了便于学习,这里整理下来。1 张量的拆分和拼接        在 PyTorch 中,对张量 (Tensor) 进行拆分通常会用到两个函数:torch.split [按块大小拆分张量]t
目录理解张量: 命名张量:(存疑) 张量的元素类型:使用dtype指定数字类型:张量的API: 张量的存储视图: 张量元数据的大小,偏移量和步长: 无复制转置 :高维转置 :连续张量:理解张量张量(tensor)是一个数组,也就是一种数据结构,它存储了一组数字,这些数字可以用一个索引单独访问,也可以用多个索引访问。它是一个数据容器。它包含的数据几
      张量(tensor)其实是离散数学中的概念,有着清晰严格的定义,不过也很深奥,这里我们仅从程序员的角度简单理解一下。比如单个数字可以看做是0阶张量,一维数组就是1阶张量,二维数组(矩阵)就是2阶张量,依此类推。可以发现,张量是由一定规的数据集,有很好的抽象能力,能很好的刻画对象。比如对于个人,健康指标可以用0~1来表示,为0阶张量。健康状态可以用数组表示,
  • 1
  • 2
  • 3
  • 4
  • 5