原标题:用python写一个简单的推荐系统作者:肥肥的兔子1前言我和室友们产生了剧荒,萌生出要做一个个人用的推荐系统,解决剧荒的问题的想法,经过一轮的死缠烂打,这个个人推荐系统终于成型了。今天来分享一下心得,对此感兴趣的朋友可以自己对着写一个。2传统推荐算法系统首先介绍一下传统的推荐系统方法,之所以叫它传统,是因为大部分学习资料上都是用这一个方法。我们来假设有这么一个矩阵(用python的列表表示
通过爬取电影数据和用户数据,再利用所爬取的数据设计并实现相关推荐算法对用户进行电影推荐。然后设计出图形用户界面(GUI)进行交互,封装成电影推荐软件,针对数据集中的用户推荐相关电影。主要分为三大模块:爬虫模块:request 库、json 库、MySQL推荐系统模块:基于物品的协同过滤算法(ItemCF 算法)GUI 模块:PyQt5操作说明运行 GUI 文件夹中的 main.py 文件即可。算法
首先,先说明下推荐系统数据中的几个类别:Item:即我们要推荐的东西,如产品、电影、网页或者一条信息片段User:对item进行评分以及接受推荐系统推荐的项目的人Rating:用户对item的偏好的表达。评分可以是二分类的(如喜欢和不喜欢),也可以是整数(如1到5星)或连续(某个间隔的任何值)。 另外,还有一些隐反馈,只记录一个用户是否与一个项目进行了交互。数据集MovieLensMovieLen
 TensorFlow一向用得不多,只是稍微了解,推荐系统的项目也没有正经做过,现在就拿这个项目,好好入门一下推荐系统。1.map 函数:另外,map还可以这么用:如要改变User数据中性别和年龄gender_map = {'F':0, 'M':1} users['Gender'] = users['Gender'].map(gender_map)2. enumerate() 函数用于将
一、对联广告<script language="JavaScript"> function top(url){ iframetop.location.href = url; }</script> <script language="JavaScript"> <!-- if(parseInt(navigator.appVersion.charAt(0
转载 2023-07-11 11:18:02
165阅读
Python构建你自己的推荐系统  现如今,网站用推荐系统为你提供个性化的体验,告诉你买啥,吃啥甚至你应该和谁交朋友。尽管每个人口味不同,但大体都适用这个套路。人们倾向于喜欢那些与自己喜欢的其他东西相似的东西,也倾向于与自己身边的人有相似的口味。推荐系统就尝试捕捉这一规律来帮助预测你也可能喜欢的其他东西。  为帮用户高效挑选商品,电子商务、社交媒体、视频和在线新闻平台已积极部署了他们自己的推荐
简介Collaborative Filtering Recommendations (协同过滤,简称CF) 是目前最流行的推荐方法,在研究界和工业界得到大量使用。但是,工业界真正使用的系统一般都不会只有CF推荐算法,Content-based Recommendations (CB) 基本也会是其中的一部分。 CB应该算是最早被使用的推荐方法吧,它根据用户过去喜欢的产品(本文统称为 item),为
# 实现推荐系统 SVD 的 Python 代码 ## 1. 流程概述 实现推荐系统 SVD 的 Python 代码需要经过以下步骤: 1. 数据准备:准备用户-物品的评分矩阵。 2. 矩阵分解:使用奇异值分解(Singular Value Decomposition,SVD)将评分矩阵分解为三个部分。 3. 推荐计算:根据分解得到的三个矩阵计算推荐结果。 下面将详细介绍每个步骤所需的代码
原创 2023-08-19 06:54:41
255阅读
Python+Django+Mysql简单在线电影推荐系统 基于用户、项目、内容的协同过滤推荐算法 SimpleWebMovieRSMPython python实现协同过滤推荐算法实现 源代码下载一、项目简介1、开发工具和实现技术Python3.8,Django3,mysql8,navicat数据库管理工具,html页面,javascript脚本,jquery脚本,bootstrap前端框架,la
一、项目介绍本系统是以Django作为基础框架,采用MTV模式,数据库使用MongoDB、MySQL和Redis,以从豆瓣平台爬取的电影数据作为基础数据源,主要基于用户的基本信息和使用操作记录等行为信息来开发用户标签,并使用Hadoop、Spark大数据组件进行分析和处理的推荐系统。管理系统使用的是Django自带的管理系统,并使用simpleui进行了美化。二、系统架构图三、系统模块图四、目录结
近日在做一个影视网站时,考虑将推荐系统集成到网站中,所以从网上查阅了一些资料,最终得以实现,下面将自己的实现原理及过程写下来,以便作为记录。1、影视相似度计算这个推荐系统的主要是根据用户的观看记录,然后为其推荐相似的影视,所以最后采用了基于内容的协同过滤算法来实现,算法中采用欧几里德距离作为影视相似度的衡量标准。代码如下:# 计算两个物品的相似度(欧几里德距离) def calculate_euc
作者 | gongyouliu全文共7426字,预计阅读时间30分钟。大家好,我是强哥。一个热爱暴走、读书、写作的人!本章目录一、推荐算法的业务流程    1. 数据收集    2. ETL 与特征工程    3. 推荐模型构建    4. 推荐预测    5. 推荐Web服务&
转载 2023-07-28 15:20:49
595阅读
1点赞
简单在线图书推荐网 使用Python语言+Django框架+Mysql数据库 基于用户、物品的协同过滤推荐算法 开发在线图书推荐系统 图书网站推荐系统 个性化推荐算法开发 人工智能、机器学习、分布式大数据开发 SimpleBookRecommendWebPython一、项目简介1、开发工具和使用技术Python3.8,Django3,mysql8,navicat数据库管理工具,html页面,jav
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录前言一、数据获取二、数据处理三、模型构建四、模型评估 前言评分系统是一种常见的推荐系统。可以使用PYTHON等语言基于协同过滤算法来构建一个电影评分预测模型。学习协同过滤算法、UBCF和IBCF。具体理论读者可参考以下文章。如,基于用户的协同过滤推荐算法原理-附python代码实现;协同过滤算法概述与python 实现协同过
# Python图书推荐系统的实现与解析 在数字时代,图书推荐系统越来越受到关注。推荐系统的目标是帮助用户根据他们的兴趣和习惯找到合适的书籍。本文将探讨如何利用Python实现一个简单的图书推荐系统,并提供完整的代码示例。 ## 推荐系统的基本概念 推荐系统通常基于用户的行为和偏好数据来生成个性化的推荐。常见的推荐技术包括内容推荐和协同过滤。内容推荐算法依赖于书籍的内容特征,而协同过滤是基于
原创 2024-10-10 07:05:48
349阅读
一、整体结构图二、代码分解2.1 infos.py一部电影的详细信息适合用 字典 结构来存储,我们可以给字典里添加多个键值对来保存电影的名称、座位表和宣传时用的字符画,比如电影《泰坦尼克号》的详细信息就可以按下面的形式保存到字典 titanic 中:infos = [ { 'name': '泰坦尼克号', 'symbol': ''' +====================
该项目含有源码、文档、程序、数据库、配套开发软件、软件安装教程项目运行环境配置:Pychram社区版+ python3.7.7 + Mysql5.7 + HBuilderX+list pip+Navicat11+Django+nodejs。项目技术:django + python+ Vue 等等组成,B/S模式 +pychram管理等等。环境需要1.运行环境:最好是python3.7.7,我们在这
基于物品的协同过滤算法(Item-Based Collaborative Filtering)是目前业界应用最多的算法,亚马逊、Netflix、Hulu、YouTube都采用该算法作为其基础推荐算法。 基于用户的协同过滤算法有一些缺点:随着网站的用户数目越来越大,计算用户兴趣相似度矩阵将越来越困难,其运算时间复杂度和空间复杂度的增长和用户数的增长近似平方关心。并且,基于用户的协同过滤算法很难对推
# 如何实现一个简单的图书推荐系统 在这个项目中,我们将实现一个简单的图书推荐系统,帮助用户根据他们的阅读历史或兴趣推荐他们可能喜欢的书籍。以下是实现这个系统的详细步骤和相关代码。 ## 流程概述 下面是我们实现图书推荐系统的步骤概述表格: | 步骤 | 描述 | |------|------------------------------
原创 9月前
182阅读
搭建一个电影推荐系统其实是个很有意思的项目,今天我们就来详细了解一下如何用Python实现这一目标。整个过程将包含环境准备、分步指南、配置详解、验证测试、优化技巧与排错指南,力求一步一步带你走过这个旅程。现在,让我们开始吧! ## 环境准备 在搭建电影推荐系统之前,我们需要准备合适的软硬件环境。下面是所需的环境信息。 ### 软硬件要求 - **操作系统**:Windows 10 / mac
原创 5月前
74阅读
  • 1
  • 2
  • 3
  • 4
  • 5