在机器学习的算法中,经常看到极大似然估计的身影,不接触数学一段时间的我,对它又熟悉又陌生,还是决定系统的写一下极大似然估计的思想。 极大似然估计法是求点估计的常用方法之一。极大似然估计法是建立在已知总体分部形式上的估计方法。1. 基本思想思想:在给定样本观察值的条件下,用使这组样本观察值出现概率最大的参数 θ 的估计。 可能仅凭一句话还不好理解,下面我们看一个例子: 设一个口袋中装有许多
转载
2023-12-19 20:09:20
18阅读
今天在研究点云分割的时候终于走完了所有的传统路子,走到了基于机器学习的分割与传统自底向上分割的分界点(CRF)算法。好吧,MIT的老教授说的对,其实你很难真正绕过某个问题,数学如是,人生也如是。---记我的机器学习之路1、机器学习 在之前的学习过程中,机器学习对我而言实在是洪水猛兽般的存在。很多玄玄乎乎的公式,算法,各种算法的名字一看就比较高级;如黑箱一般的过程;摸不清的物理意义;繁杂的公式
一、为什么要用极大似然估计 在一般情况下,要求一个样本属于哪一类,首先要求出样本在属于各类的概率,即后验概率:P(w|x),其中w代表类别(w可能取值w1、w2、…wN),我们通常使用贝叶斯公式来求得: 但有时样本数目有限,我们无法准确获得先验概率P(wi)以及类条件概率P(x|wi),所以我们需要对二者
转载
2024-01-04 06:06:40
105阅读
机器学习笔记(2)-极大似然估计这一节我们要尝试通过极大似然函数来估计出当一个数据集符合正太分布时的参数。极大似然估计极大似然估计,只是一种概率论在统计学的应用,它是参数估计的方法之一。说的是已知某个随机样本满足某种概率分布,但是其中具体的参数不清楚,参数估计就是通过若干次试验,观察其结果,利用结果推出参数的大概值。极大似然估计是建立在这样的思想上:已知某个参数能使这个样本出现的概率最大,我们当然
转载
2023-09-12 14:45:44
66阅读
概念1 概率和统计:概率是已知模型和参数,推数据。统计是已知数据,推模型和参数; 2 极大似然估计(Maximum likelihood estimation,简称MLE):俗理解来说,就是利用已知的样本结果信息,反推最具有可能(最大概率)导致这些样本结果出现的模型参数值,换句话说,极大似然估计提供了一种给定观察数据来评估模型参数的方法,即:“模型已定,参数未知”; 3 极大似然估计的前提假设:所
转载
2023-09-27 21:13:03
277阅读
极大似然估计(Maximum Likelihood Estimate)一、背景知识二、从概率模型理解极大似然估计三、极大似然估计的理论原理四、应用场景 一、背景知识1822年首先由德国数学家高斯(C. F. Gauss)在处理正态分布时首次提出;1921年,英国统计学家罗纳德·费希尔(R. A. Fisher)证明其相关性质,得到广泛应用,数学史将其归功于费希尔。研究问题本质背后的深刻原因在于,
转载
2023-10-24 00:13:19
114阅读
Table of Contents一、思想理解二、求解过程三、总结一、思想理解极大似然估计法(the Principle of Maximum Likelihood )由高斯和费希尔(R.A.Figher)先后提出,是被使用最广泛的一种参数估计方法,该方法建立的依据是直观的最大似然原理。总结起来,最大似然估计的目的就是:利用已知的样本结果,反推最有可能(最大概率)导致这样结果的参数值。原理:极大似
转载
2023-10-09 00:15:42
287阅读
极大似然估计方法(Maximum Likelihood Estimate,MLE)也称为最大概似估计或最大似然估计,其作用是通过采样的样本分布去估计整个数据中的某些参数。简单点说,现在已知一个数据的概率分布,这个概率分布中有一些参数是未知的,那么我们如何通过采样的几个样本来估计这些参数呢,这个时候就要使用极大似然估计。其实极大似然估计很多时候和我们的直觉是一样的,比如有一个系统会随机输出1-6的数
转载
2024-05-07 19:03:53
42阅读
一、频率派 假设X为随机数据,其矩阵表示维度为N,假设θ为X随机数的特征,频率派认为在一次实验中,如果时间A发生了,那么则认为事件A的发生一定是事件A的概率最大,记为P(x=A)最大,由假设可知事件A发生的概率和θ有关。 极大似然是指一次试验就发生的事件,这个事件本身发生概率最大,极大似然估计具体求解与推导公式如下: 假设:x是服从某个概率的分别,可以用概率P =p(x|Θ),其中Θ为概率分
最大似然估计
我们详细的论述了模型容量以及由模型容量匹配问题所产生的过拟合和欠拟合问题。这一次,我们探讨哪些准则可以帮助我们从不同的模型中得到特定函数作为好的估计。其中,最常用的准则就是极大似然估计(maximum likelihood estimation,MLE)。(1821年首先由德国数学家C. F. Gauss提出,但是这个方法通常被归功于英国的统计学家R.
转载
2024-01-17 13:33:44
58阅读
目录一、原理二、程序代码三、运行结果附录:名词解释一、原理极大似然参数估计法需要构造一个以观测数据和未知参数为自变量的似然函数,使这个函数达到极大参数值,就是模型的参数估计值。通常噪声的概率密度函数作为似然函数,所以极大似然函数法需要已知噪声的分布。在最简单的情况下,可假定噪声具有正态分布。优点:具有良好的渐进性质缺点:计算量大考虑控制系统模型简化为CARMA模型:则递推极大似然参数估计算法公式为
转载
2023-11-06 23:04:49
785阅读
一、极大似然估计概述 极大似然估计是频率学派的进行参数估计的法宝,基于以下两种假设前提: ①某一事件发生是因为该事件发生概率最大。 ②事件发生与模型参数θ有关,模型参数θ是一个定值。 极大似然估计是通过已知样本
转载
2023-11-16 15:53:24
156阅读
维基百科:在统计学中,最大似然估计(英语:Maximum Likelihood Estimation,简作MLE),也称极大似然估计,是用来估计一个概率模型的参数的一种方法极大似然估计,通俗理解来说,就是利用已知的样本结果信息,反推最具有可能(最大概率)导致这些样本结果出现的模型参数值!换句话说,极大似然估计提供了一种给定观察数据来评估模型参数的方法,即:“模型已定,参数未知”
转载
2023-12-19 19:33:08
60阅读
极大似然估计(Maximum Likelihood Estimation,MLE)和贝叶斯估计(Bayesian Estimation)是统计推断中两种最常用的参数估计方法,二者在机器学习中的应用也十分广泛。本文将对这两种估计方法做一个详解。考虑这样一个问题:总体
的概率密度函数为
,观测到一组样本
,需要估计参数
。下面我们将采
转载
2024-01-16 14:23:40
41阅读
极大似然估计(maximum likelihood estimation,mle)方法最初由德国数学家高斯提出,但这个方法通常被归功于英国统计学家罗纳德·菲舍尔。他在1992年的论文On the mathematical foundations of theoretical statistics, reprinted in Contributions to Mathematical Statist
转载
2023-11-02 00:18:13
115阅读
# Python 极大似然估计(Maximum Likelihood Estimation)
## 引言
极大似然估计(Maximum Likelihood Estimation,简称 MLE)是一种统计方法,用于在给定观测数据的情况下估计模型参数。MLE 通过找到使观测数据出现的概率最大的参数值组合来工作。广泛应用于机器学习、统计推断和数据分析等领域。
本文将介绍极大似然估计的基本概念、数
极大似然估计 标签(空格分隔): 数学 最大似然估计(maximun likelihood estimate)是一种统计方法,它用来求一个样本集的相关概率密度函数的参数。这个方法最早是遗传学家以及统计学家哦罗纳德·费雪爵士在1912至1922年间开始使用的。 似然是对likelihood的一种较为贴 ...
转载
2021-07-29 20:13:00
338阅读
贝叶斯决策我们都知道经典的贝叶斯公式:p(w∣x)=p(x∣w)p(w)p(x)p(w|x)=\
原创
2022-12-04 07:45:00
651阅读
”这种事件,我们可以问硬币落地时十次都是正面向上的“概率”是多少;而对
转载
2023-08-11 15:47:21
550阅读
极大似然估计 极大似然估计依据的假设是如果一个事件的概率最大,那么它就最有可能发生。 极大似然估计的通俗理解就是已知样本的结果信息(标签y),反推最大概率导致这一结果的模型参数值(W和b) 似然函数 对于函数$P(x|\theta)$, 输入有两个:$x$表示某一个具体的数据,$\theta$表示模 ...
转载
2021-10-22 08:34:00
311阅读
2评论