一、频率派  假设X为随机数据,其矩阵表示维度为N,假设θ为X随机数的特征,频率派认为在一次实验中,如果时间A发生了,那么则认为事件A的发生一定是事件A的概率最大,记为P(x=A)最大,由假设可知事件A发生的概率和θ有关。  极大是指一次试验就发生的事件,这个事件本身发生概率最大,极大估计具体求解与推导公式如下:  假设:x是服从某个概率的分别,可以用概率P =p(x|Θ),其中Θ为概率分
概念1 概率和统计:概率是已知模型和参数,推数据。统计是已知数据,推模型和参数; 2 极大估计(Maximum likelihood estimation,简称MLE):俗理解来说,就是利用已知的样本结果信息,反推最具有可能(最大概率)导致这些样本结果出现的模型参数值,换句话说,极大估计提供了一种给定观察数据来评估模型参数的方法,即:“模型已定,参数未知”; 3 极大估计的前提假设:所
Table of Contents一、思想理解二、求解过程三、总结一、思想理解极大估计法(the Principle of Maximum Likelihood )由高斯和费希尔(R.A.Figher)先后提出,是被使用最广泛的一种参数估计方法,该方法建立的依据是直观的最大原理。总结起来,最大估计的目的就是:利用已知的样本结果,反推最有可能(最大概率)导致这样结果的参数值。原理:极大
极大估计(Maximum Likelihood Estimate)一、背景知识二、从概率模型理解极大估计三、极大估计的理论原理四、应用场景 一、背景知识1822年首先由德国数学家高斯(C. F. Gauss)在处理正态分布时首次提出;1921年,英国统计学家罗纳德·费希尔(R. A. Fisher)证明其相关性质,得到广泛应用,数学史将其归功于费希尔。研究问题本质背后的深刻原因在于,
极大估计方法(Maximum Likelihood Estimate,MLE)也称为最大概估计或最大估计,其作用是通过采样的样本分布去估计整个数据中的某些参数。简单点说,现在已知一个数据的概率分布,这个概率分布中有一些参数是未知的,那么我们如何通过采样的几个样本来估计这些参数呢,这个时候就要使用极大估计。其实极大估计很多时候和我们的直觉是一样的,比如有一个系统会随机输出1-6的数
目录一、原理二、程序代码三、运行结果附录:名词解释一、原理极大参数估计法需要构造一个以观测数据和未知参数为自变量的函数,使这个函数达到极大参数值,就是模型的参数估计值。通常噪声的概率密度函数作为函数,所以极大函数法需要已知噪声的分布。在最简单的情况下,可假定噪声具有正态分布。优点:具有良好的渐进性质缺点:计算量大考虑控制系统模型简化为CARMA模型:则递推极大参数估计算法公式为
一、极大估计概述        极大估计是频率学派的进行参数估计的法宝,基于以下两种假设前提: ①某一事件发生是因为该事件发生概率最大。 ②事件发生与模型参数θ有关,模型参数θ是一个定值。         极大估计是通过已知样本
维基百科:在统计学中,最大估计(英语:Maximum Likelihood Estimation,简作MLE),也称极大估计,是用来估计一个概率模型的参数的一种方法极大估计,通俗理解来说,就是利用已知的样本结果信息,反推最具有可能(最大概率)导致这些样本结果出现的模型参数值!换句话说,极大估计提供了一种给定观察数据来评估模型参数的方法,即:“模型已定,参数未知”
主要内容:一、逻辑回归的原理二、极大估计三、逻辑回归的极大估计四、Python中的逻辑回归预告:本文将会带领大家一步步理解逻辑回归的原理,并且会用几行代码快速实现一个逻辑回归模型训练和预测的例子。之后,我计划专门用一篇文章来演示如何评估逻辑回归模型的表现以及如何调优,这部分内容会更加偏重于实战,感兴趣的同学欢迎关注后续的更新!目前来看,逻辑回归这一经典算法的应用极为广泛。如果要按照应用广度
# Python 极大估计(Maximum Likelihood Estimation) ## 引言 极大估计(Maximum Likelihood Estimation,简称 MLE)是一种统计方法,用于在给定观测数据的情况下估计模型参数。MLE 通过找到使观测数据出现的概率最大的参数值组合来工作。广泛应用于机器学习、统计推断和数据分析等领域。 本文将介绍极大估计的基本概念、数
极大估计(maximum likelihood estimation,mle)方法最初由德国数学家高斯提出,但这个方法通常被归功于英国统计学家罗纳德·菲舍尔。他在1992年的论文On the mathematical foundations of theoretical statistics, reprinted in Contributions to Mathematical Statist
极大估计(Maximum Likelihood Estimation,MLE)和贝叶斯估计(Bayesian Estimation)是统计推断中两种最常用的参数估计方法,二者在机器学习中的应用也十分广泛。本文将对这两种估计方法做一个详解。考虑这样一个问题:总体 的概率密度函数为 ,观测到一组样本 ,需要估计参数 。下面我们将采
极大估计 标签(空格分隔): 数学 最大估计(maximun likelihood estimate)是一种统计方法,它用来求一个样本集的相关概率密度函数的参数。这个方法最早是遗传学家以及统计学家哦罗纳德·费雪爵士在1912至1922年间开始使用的。 是对likelihood的一种较为贴 ...
贝叶斯决策我们都知道经典的贝叶斯公式:p(w∣x)=p(x∣w)p(w)p(x)p(w|x)=\
原创 2022-12-04 07:45:00
651阅读
”这种事件,我们可以问硬币落地时十次都是正面向上的“概率”是多少;而对
转载 2023-08-11 15:47:21
550阅读
极大估计 极大估计依据的假设是如果一个事件的概率最大,那么它就最有可能发生。 极大估计的通俗理解就是已知样本的结果信息(标签y),反推最大概率导致这一结果的模型参数值(W和b) 函数 对于函数$P(x|\theta)$, 输入有两个:$x$表示某一个具体的数据,$\theta$表示模 ...
在机器学习和深度学习里,极大估计是一个基础算法,这篇文章主要记录一下极大估计作用和原理 例 现在我们抛一枚特制的硬币,假设他正面朝上的概率是θ,显然这是一个二项分布,反面额概率就是1-θ,用公式表示如下 他的概率函数: 拆开写就是 函数: 假设投了5次硬币,结果是10011(3正2反),
原创 2021-05-25 22:57:49
1420阅读
极大估计法是求估计的另一种方法。它最早由高斯提出。后来为费歇在1912年的文章中重新提出,并且证明了这个方法的一些性质。极大估计这一名称也是费歇给的。这是一种上前仍然得到广泛应用的方法。它是建立在极大原理的基础上的一个统计方法,极大原理的直观想法是:一个随机试验如有若干个可能的结果A,B,C,…。若在一次试验中,结果A出现,则一般认为试验条件对A出现有利,也即A出现的概率很大。&
下周组会要讲朴素贝叶斯,朴素贝叶斯之前西瓜书上先是介绍了最大估计,但是我完全不知道那个理论的东西的到底能干嘛,然后找了一些资料看了下,最主要的是B站的一个视频,连接放在最后面。这个视频比较清楚的解释了极大估计到底是什么,它的含义是什么。视频链接:https://www.bilibili.com/video/av56378793?p=1&t=541 极大估计Maximu
一、引入  极大估计,我们也把它叫做最大估计(Maximum Likelihood Estimation),英文简称MLE。它是机器学习中常用的一种参数估计方法。它提供了一种给定观测数据来评估模型参数的方法。也就是模型已知,参数未定。   在我们正式讲解极大估计之前,我们先简单回顾以下两个概念:概率密度函数(Probability Density function),英文简称pdf
  • 1
  • 2
  • 3
  • 4
  • 5