# Python LDA项目方案
## 项目概述
在处理文本数据时,主题建模是一个重要的任务,能够帮助我们从大量数据中提取出有用的主题信息。Latent Dirichlet Allocation (LDA) 是一种常用的主题建模方法。本文将向您展示如何在Python中使用LDA进行主题建模,包括必要的库导入和代码实现。
## 需求分析
在进行LDA主题建模的项目中,我们需要:
1. 收集
原创
2024-10-13 04:40:28
71阅读
在介绍具体实现之前先啰嗦几句,很多运维朋友或正在使用 LDAP 的朋友来说,有很多场景需要对 LDAP 进行操作,比如:员工离职、员工更换部门、提升员工相应权限等。诸如以上的的操作都需要操作 LDAP 来实现,那么有几种办法来试下呢? 第一种:使用原始的ldap命令如 ldappadd、ldapsearch、ldapdelete、ldappasswd、ldapmodify等来操作。 第二种:使用
转载
2023-09-27 10:51:08
74阅读
(一)LDA作用 传统判断两个文档相似性的方法是通过查看两个文档共同出现的单词的多少,如TF-IDF等,这种方法没有考虑到文字背后的语义关联,可能在两个文档共同出现的单词很少甚至没有,但两个文档是相似的。 举个例
转载
2024-06-21 19:46:36
54阅读
一、功能描述 Python 已成为当前最热门的编程工具之一,在数据分析、爬虫、机器学习、Web 开发等领域 有着广泛的应用。LDA 也称为隐狄利克雷分布,LDA 目的是识别主题,即把文档—词汇矩阵变成 文档—主题矩阵(分布)和主题—词汇矩阵(分布)。本设计具体功能如下: 1.Selenium 爬取知网“Python”主题、类别为“核心期刊”论
转载
2023-07-07 17:11:07
230阅读
最近一直在训练LDA模型,将LDA模型封装在一个脚本中,可以直接在终端传入参数进行LDA的训练和预测. 需要在同目录下准备一个stopwords(停用词典)#conding=utf-8
import codecs
import os
import re
from os import mkdir
from os.path import exists, isdir, abspath, join
imp
转载
2024-09-16 16:00:25
122阅读
1.LDA主题模型困惑度 这部分参照:LDA主题模型评估方法–Perplexity,不过后面发现这篇文章Perplexity(困惑度)感觉写的更好一点,两篇都是翻译的维基百科。 perplexity是一种信息理论的测量方法,b的perplexity值定义为基于b的熵的能量(b可以是一个概率分布,或者概率模型),通常用于概率模型的比较 wiki上列举了三种perplex
转载
2023-12-28 11:11:10
143阅读
1.1 配置ldap认证 官网地址:https://pypi.org/project/django-auth-ldap/1.3.0/ 1、django使用ldap认证需要安装下面两个模块(这里是在linux下测试的) 1.安装Python-LDAP(python_ldap-2.4.25-cp27-none-win_amd64.whl)pip install python_ldap-2
转载
2023-11-29 14:48:10
67阅读
这次,我们来学习一种经典的降维方法:线性判别分析(Linear Discriminant Analysis, 以下简称LDA). 在前面博客中(点我)我们讲解了PCA降维算法。PCA追求的是在降维之后能够最大化保持数据的内在信息,并通过衡量在投影方向上的数据方差的大小来衡量该方向的重要性。PCA优缺点: 优点:1.最小误差 2.提取了主要信息 缺点:PCA将所有的样本(特征向量集合)作为一个整体对
转载
2023-08-15 14:40:58
240阅读
# 如何使用Python编写LDA模型解决文本主题分类问题
概述:Latent Dirichlet Allocation(LDA)是一种用于从文本数据中抽取主题的概率模型。在这篇文章中,我们将介绍如何使用Python编写LDA模型,并解决一个实际问题:对新闻文本进行主题分类。
## 实际问题描述
假设我们有一批新闻文本数据,我们想要对这些新闻进行主题分类,以便更好地理解不同主题在新闻中的分布
原创
2024-06-14 04:42:42
80阅读
##################################################################################3两类的线性判别问题可以看作是把所有样本都投影到一个方向上,然后在这个一维空间中确定一个分类的阈值。过这个阈值点且与投影方向垂直的超平面就是两类的分类面。Fisher线性判别的思想就是:选择投影方向,使投影后两类相隔尽可能远,而同时每一
实验原理LDA(Linear Discriminant Analysis)线性判别分析是一种监督学习的线性分类算法,它可以将一个样本映射到一条直线上,从而实现对样本的分类。LDA的目标是找到一个投影轴,使得经过投影后的两类样本之间的距离最大,而同一类样本之间的距离最小。LDA的过程可以分为以下几步:1.计算每个类别的均值向量。2.计算类内散度矩阵(Within-class scatter matr
转载
2023-06-18 14:56:52
171阅读
LDA(Latent Dirichlet Allocation):潜在狄利克雷分布,是一种非监督机器学习技术。它认为一篇文档是有多个主题的,而每个主题又对应着不同的词。一篇文档的构造过程,首先是以一定的概率选择某个主题,然后再在这个主题下以一定的概率选出某一个词,这样就生成了这篇文档的第一个词。不断重复这个过程,就生成了整篇文章(当然这里假定词与词之间是没有顺序的,即所有词无序的堆放在一个大袋子中
转载
2023-11-01 14:49:51
104阅读
文章目录1 前言1.1 线性判别模型的介绍1.2 线性判别模型的应用2 demo数据演示2.1 导入函数2.2 训练模型2.3 预测模型3 LDA手写数字数据演示3.1 导入函数3.2 导入数据3.3 输出图像3.4 建立模型3.5 预测模型4 讨论 1 前言1.1 线性判别模型的介绍线性判别模型(Linear Discriminant Analysis,LDA)是一种经典的监督学习算法,它旨在
转载
2023-10-03 19:17:13
116阅读
Hello 大家好,我是一名新来的金融领域打工人,日常分享一些python知识,都是自己在学习生活中遇到的一些问题,分享给大家,希望对大家有一定的帮助!让机器帮助我们在海量的文本中快速找到关键信息,这种技术称为——话题建模(topic modeling)。话题建模的方法有许多种,潜在语义索引(LSI),概率潜在语义分析(pLSA),潜狄利克雷分布(LDA)等等方法。在我们进行话题建模之前先准备好一
转载
2023-10-03 07:25:31
77阅读
什么是LDA主题模型?LDA资料下载链接:https://pan.baidu.com/s/13W3GWj43PoUMuzFiWgFiPA 提取码:1234 【LDA用途】:主题模型(也称话题模型)就是用来发现大量文档集合的主题的算法。借助这些算法我们可以对文档集合进行归类。适用于大规模数据场景。目前甚至可以做到分析流数据。需要指出的是,话题模型不仅仅限于对文档
转载
2024-01-22 08:16:46
72阅读
主题建模是一种用于找出文档集合中抽象“主题”的统计模型。LDA(Latent Dirichlet Allocation)是主题模型的一个示例,用于将文档中的文本分类为特定的主题。LDA算法为每一个文档构建出一个主题,再为每一个主题添加一些单词,该算法按照Dirichlet分布来建模。那便开始吧!数据在这里将使用到的数据集是15年内发布的100多万条新闻标题的列表,可以从Kaggle下
转载
2023-10-08 06:56:55
134阅读
LDAP概述目录系统是关于某些类别的对象(例如人)的信息列表。目录可以用于查找特定对象的信息,也可以反方向查找满足特定需求的对象。 企业中的员工通讯录就是一个目录系统。目录访问协议(directory access protocol)就是用来访问目录中数据的标准化方式。最广泛使用的是 轻量级目录访问协议(lightweight directory access protocol,LDAP
转载
2024-01-16 11:28:02
72阅读
LDA是自然语言处理中非常常用的一个主题模型,全称是隐含狄利克雷分布(Latent Dirichlet Allocation),简称LDA。作用是将文档集中每篇文档的主题以概率分布的形式给出,然后通过分析分到同一主题下的文档抽取其实际的主题(模型运行结果就是一个索引编号,通过分析,将这种编号赋予实际的意义,通常的分析方法就是通过分析每个topic下最重要的term来进行总结归纳),根据主题分布进行
转载
2023-07-21 17:23:46
1348阅读
LDA 简介LDA认为一篇文档由一些主题按照一定概率组成,一个主题又由一些词语按照一定概率组成。早期人们用词袋模型对一篇文章进行建模,把一篇文档表示为若干单词的计数。无论是中文还是英文,都由大量单词组成,这就造成词袋向量的维数巨大,少则几千多则上万,在使用分类模型进行训练时,非常容易造成训练缓慢以及过拟合。LDA本质上把词袋模型进行了降维,把一篇文档以主题的形式进行了表示。主题的个数通常为几百,这
转载
2024-04-07 17:53:02
90阅读
函数说明 1.LDA(n_topics, max_iters, random_state) 用于构建LDA主题模型,将文本分成不同的主题 参数说明:n_topics 表示分为多少个主题, max_iters表示最大的迭代次数, random_state 表示随机种子 2. LDA.components_ 打印输入特征的权重参数,LDA主题模型:可以用于做分
转载
2024-03-21 14:14:47
24阅读