第9讲:多分类问题(上)用softmax 解决多分类问题用pytorch 实现多分类问题1.softmaxsoftmax:让线形层的输出结果(进行softmax前的input)有负数,通过幂指变换,得到正数。所有类的概率求和为1。2.softmax如何做到上面的操作:对每一L层的输出进行幂指运算,使其>0所有K个分类的输出幂指再求和,结果=1计算各分类的分布example:输入向量的每个元素
转载 2023-07-05 14:00:16
291阅读
一、分类算法中的学习概念         因为分类算法都是有监督学习,故分为以下2种学习。         1、急切学习:在给定的训练元组之后、接受到测试元组之前就构造好分类模型。   &n
转载 2024-04-24 12:53:58
19阅读
SPSS数据文件比较独特,一份数据有数据视图和变量视图两个界面,准备数据时需要在变量视图下定义具体的变量属性,分不清变量类型,也不知道选用哪种测量方式,不知道变量标签值是什么概念,这些往往让许多初学者感到迷茫。今天给大家分享一下小兵的经验。类别型字符串数据,建议优先定义为数字类型+名义测度,并添加相应的标签值。先不着急解释这里面的概念,我们先来看一组大名鼎鼎数据。由统计学家Fisher收集整理的鸢
转载 2024-05-03 12:40:43
64阅读
文章目录前言一、重要参数1.1 criterion建立一棵树的步骤1.2 random_state & splitter1.2.1 建立树的第五步(建立模型)添加参数1.3 剪枝参数1.3.1 查看对训练集的拟合效果如何1.3.2 max_depth1.3.3 min_samples_leaf & min_samples_split1.3.4 建立树的第五步(建立模型)添加上述参
K-NN是一种非常简单的算法概述: KNN 算法本身简单有效,它是一种lazy-learning 算法。 分类器不需要使用训练集进行训练,训练时间复杂度为0。 KNN 分类的计算复杂度和训练集中的文档数目成正比,也就是说,如果训练集中文档总数为n,那么KNN分类时间复杂度为O(n)。基本原理基于统计的方法 来进行样本点分类判别对于未知类别属性数据集中的点:1.计算已知类别数据集中的点与当前点的
1、介绍  KNN是k nearest neighbor 的简称,即k最邻近,就是找k个最近的实例投票决定新实例的类标。KNN是一种基于实例的学习算法,它不同于贝叶斯、决策树等算法,KNN不需要训练,当有新的实例出现时,直接在训练数据集中找k个最近的实例,把这个新的实例分配给这k个训练实例中实例数最多类。KNN也成为懒惰学习,它不需要训练过程,在类标边界比较整齐的情况下分类的准确率很高。KNN算法
对于业务用户来说,希望技术团队完成的是正确分类,区别无分是分成两类还是多类,是一个级别的分类还是多个级别的分类,然后要求准一点。那么什么是准一点呢?也许用户还没有意识到这个问题的复杂性,或者说没有意识到他们真正关心的是什么。由于多分类问题可以简化为多个二分类问题,我们直接来分析看似简单的二分类问题。准一点就是准确度(Accuracy),也就是说用户给了我们数据,我们分好类把答卷交给用户,用户判卷子
作者 | Charmvek-最近邻算法是基于实例的学习方法中最基本的,先介绍基x`于实例学习的相关概念。基于实例的学习已知一系列的训练样例,很多学习方法为目标函数建立起明确的一般化描述;但与此不同,基于实例的学习方法只是简单地把训练样例存储起来。从这些实例中泛化的工作被推迟到必须分类新的实例时。每当学习器遇到一个新的查询实例,它分析这个新实例与以前存储的实例的关系,并据此把一个目标函数值
* 1 对卷积神经网络的研究可追溯到1979和1980年日本学者福岛邦彦发表的论文和“neocognition”神经网络。 * 2 AlexNet使用卷积神经网络解决图像分类问题,在ILSVR2012中获胜并大大提升了state-of-start的准确率(大概16%左右)。(在11年top5的错误率在25.8%左右)分类的四个里程碑1.AlexNet8layer 2012年Paper: Image
实现简单图像分类器1. 数据加载1.1 常用公共数据集加载1.2 私人数据集加载方法2. 定义神经网络3. 定义权值更新与损失函数4. 训练与测试神经网络5. 神经网络的保存与载入 本篇博客的目标是实现一个简单的图像分类器, 本篇博客主要分为以下几个步骤:数据的加载与归一、定义神经网络、定义损失函数、训练与测试神经网络以及神经网络存储与读取。 1. 数据加载数据加载就是把训练数据导入到神经网络
转载 2023-10-17 22:21:18
167阅读
根据《统计学习方法》第四章朴素贝叶斯算法流程写成,引入贝叶斯估计(平滑处理)。本例旨在疏通算法流程,理解算法思想,故简化复杂度,只考虑离散型数据集。如果要处理连续型数据,可以考虑将利用“桶”把连续型数据转换成离散型,或者假设连续型数据服从某分布,计算其概率密度来代替贝叶斯估计。《机器学习实战》的朴素贝叶斯算法,是针对文本处理(垃圾邮件过滤)的算法,是二元分类(y=0或y=1),且特征的取值也是二元
原理SVM被提出于1964年,在二十世纪90年代后得到快速发展并衍生出一系列改进和扩展算法,在人像识别、文本分类等模式识别(pattern recognition)问题中有得到应用。支持向量机(Support Vector Machine, SVM)是一类按监督学习(supervised learning) 方式对数据进行二元分类的广义线性分类器(generalized linear classi
 KNN分类算法应该算得上是机器学习中最简单的分类算法了,所谓KNN即为K-NearestNeighbor(K个最邻近样本节点)。在进行分类之前KNN分类器会读取较多数量带有分类标签的样本数据作为分类的参照数据,当它对类别未知的样本进行分类时,会计算当前样本与所有参照样本的差异大小;该差异大小是通过数据点在样本特征的多维度空间中的距离来进行衡量的,也就是说,如果两个样本点在在其特征
转载 2023-11-13 06:22:27
91阅读
Logistic回归的两种方法:梯度下降法和优化函数逻辑回归是一种非常流行的机器学习技术。当因变量是分类的时,我们使用逻辑回归。本文将重点介绍针对多类分类问题的逻辑回归的实现。我假设您已经知道如何使用Logistic回归实现二进制分类。如果您尚未使用Logistic回归进行二进制分类,那么建议您先阅读本文,然后再深入研究本文。因为多类分类是建立在二进制分类之上的。您将在本文中学习二进制分类的概念,
说在前面  这篇博客主要介绍怎么解决多分类问题?下面我们解决多分类问题的时候会用到 Softmax Classifier,下面我们就来看看 Softmax 分类器怎么解决多分类问题的以及我们如何实现。      上一篇博客我们对糖尿病数据集进行了二分类,我们最后输出的是 的概率和      但实际上,我们还介绍了一些其他数据集,比如 MNIST(手写数字),这个数据集的分类一共有 10 类(分
Pytorch学习笔记09——多分类问题在上一篇文章的糖尿病数据集当中,输出只有0和1俩种可能值。 P(y=0) = 1-P(y=1) 如何实现多分类问题? 经过最后一步softmax后得到10个预测值,如果我们仍然用二分类的思维去想这个问题: y1^hat属于第一类的概率是0.8, 不属于第一类的概率是0.2. y2^hat属于第二类的概率是0.9, 不属于第二类的概率是0.1. y3^hat属
       其实这个比赛早在19年的时候就结束,比赛名为《Understanding Clouds from Satellite Images》,原来的任务其实不仅要识别出来类型还要能够分割出来具体的区域,这里我只是基于这个卫星云数据集来实践多标签分类模型,所以分割就留给以后有时间在做了。       官方地址在这里
转载 2024-02-23 10:44:43
15阅读
本文不涉及细节理论,只做必要性的介绍,侧重代码实现。线性模型-多分类问题的理论分析只有二分类是完全不够用的,因此需要其他的算法来解决多分类问题。多分类分为OvO(One vs One)和OvR(One vs Rest).OvO:一对一,例如n个分类,两两一组使用二分类,最后选出二分类出来最多的情况,需要n(n-1)/2个分类器OvR:一对多,例如n个分类,一次性比较这n个分类中的概率,找出概率最大
# Python多分类实现流程 ## 1. 理解多分类问题 在机器学习领域中,多分类指的是将输入的样本分到多个不同的类别中。在Python中,我们可以使用不同的算法和库来实现多分类任务。下面是实现多分类的大致流程: ```mermaid sequenceDiagram participant 开发者 participant 小白 开发者 ->> 小白: 解释多分类问题
原创 2023-10-09 04:21:23
92阅读
文章目录0 写在前面1 softmax函数2 数据预处理2.1 scatter()函数的cmap属性3 激活函数4 模型搭建5 完整代码6 输出分析6.1 目标6.2 运行过程7 总结 0 写在前面二分类问题是多分类问题的一种特殊情况,区别在于多分类用softmax代替sigmoid函数。softmax函数将所有分类的分数值转化为概率,且各概率的和为1。1 softmax函数softmax函数首
  • 1
  • 2
  • 3
  • 4
  • 5