先观察一下要处理的数据是怎样的,原始文件是有五组分隔开的数据,第一行是表示组名,第二行是列标签,第三行开始才是真正的数据。很容易就会想到使用pandas来处理这个文件了。 首先读取文件并创建一个dataframe对象import pandas as pd df = pd.read_excel('use_nofillvalue(1).xlsx')查看df的内容,可以看到列标签很多都是Unamed,是
发现自己对各种分布不太熟悉,决定趁此机会整理一下,看有没有比较好的记忆方法。各种分布最重要的理解它的实际意义,都是解决什么问题的,其次是公式的含义。所以下面都按以下几点来展开:实际意义、数学表达、对表达式的解释。目录一、离散型变量的分布1. 0—1分布(两点分布)X~B(1,p)2. 二项分布(n重伯努利分布)X~B(n,p)3. 泊松分布 X~P(λ)4. 几何分布 X~G(
转载 2023-10-12 13:25:15
7061阅读
1.两点分布——离散型概率分布2.二项分布——离散型概率分布3.泊松分布——离散型概率分布 泊松分布的期望和方差都是参数λλ!import numpy as np a = np.random.poisson(55,size=(4,)) print(a) print(type(a)) >>> [46 50 39 57] <class 'numpy.ndarray'>4.
import numpy as npscore=np.array([[80,89,86,67,79], [78,97,89,67,81], [90,94,78,67,74], [91,91,90,67,69], [76,87,75,67,86], [70,79
生成随机数是程序设计里常见的需求。一般的编程语言都会自带一个随机数生成函数,用于生成服从均匀分布的随机数。不过有时需要生成服从其它分布的随机数,例如高斯分布或指数分布等。有些编程语言已经有比较完善的实现,例如Python的NumPy。这篇文章介绍如何通过均匀分布随机数生成函数生成符合特定概率分布的随机数,主要介绍Inverse Ttransform和Acceptance-Rejection两种基础
## Python均匀分布 在统计学和概率论中,均匀分布(Uniform Distribution)是一种概率分布,它的概率密度函数在一个区间内是常数。在统计分析和模拟中,均匀分布是非常常见的一种分布,也是一种最简单的连续概率分布之一。 ### 均匀分布的特点 在均匀分布中,每个值都有相同的概率被选中,概率密度函数如下所示: ![均匀分布公式]( 其中`a`和`b`分别是分布的起始和结束
原创 2023-08-12 12:29:01
518阅读
# Python中的均匀分布及其应用 均匀分布是一种概率分布,所有可能的值都有相同的概率。它可以用于各种模拟和随机数生成任务中。在Python中,使用NumPy库很容易地生成均匀分布的随机数。在这篇文章中,我们将探讨均匀分布的概念、如何使用Python生成均匀分布的随机数,以及它的一些应用场景。 ## 均匀分布的定义 均匀分布分为离散均匀分布和连续均匀分布两种。对于离散均匀分布,所有可能的离
原创 2024-09-16 04:14:34
100阅读
文章目录1.生成数组,设置指定的数据类型,输出0-10的数据,步长为2,调整数据类型2.一二三维数组,更改数组形状,在不知道t5元素个数的情况下,将其变成1维数组,数组的计算函数3.读取csv文件,进行转置方法4.读取csv文件取不连续的行,列5.下面的方式对numpy设置值6.数组的拼接7.数组的行列交换8.两个表格合并拼接案例9.输出特殊数组10.numpy生成随机数11.生成均匀分布,生成
均匀分布Python 中的实现与应用 均匀分布是概率理论中的一种基础概念,广泛应用于随机数生成、模拟实验以及机器学习等多个领域。在 Python 中,我们通常使用 NumPy 库来处理均匀分布的问题。本文将围绕均匀分布的实现过程进行深入探讨,包括适用场景分析、性能指标、特性拆解、实战对比、深度原理及生态扩展。 ### 背景定位 在许多实际应用中,我们需要某种程度的随机性,以模拟或测试不同
原创 6月前
43阅读
tensor常用数学操作1. 随机数1.1 torch.rand() - 均匀分布数字1.2 torch.randn() - 正态分布数字2. 求和2.1 torch.sum(data, dim)2.2 numpy.sum(data, axis)3. 求积3.1 点乘--对应位置相乘3.2 矩阵乘法4. 均值、方差4.1 torch tensor.mean() .std()4.2 numpy a
一、概率密度函数和分布函数分布函数是概率密度函数从负无穷到正无穷上的积分;在坐标轴上,概率密度函数的函数值y表示落在x点上的概率为y;分布函数的函数值y则表示x落在区间(-∞,+∞)上的概率。二、均匀分布的概率密度函数假设x服从[a,b]上的均匀分布,则x的概率密度函数如下 概率密度图像如上图所示
转载 2023-11-06 13:56:59
707阅读
原创:hxj7 本文介绍了拒绝抽样(Reject Sampling)。 前文《R-概率统计与模拟(三)变换均匀分布对特定分布进行抽样》介绍了通过“变换均匀分布”来对特定分布进行抽样的方法,但是该方法需要知道累积分布的解析表达式及其反函数,所以有一定的限制。其实,我们最常接触的还是 ,根据 抽样往往更直接。比如,均匀分布的 就很简单,对
在实现粒子系统时,希望粒子能均匀分布在某个范围内,很容易想到C++标准的随机数发生器(实际是产生的是伪随机数,一般使用所谓的线型同余法),但随机数的“均匀分布”需要无限多个样本,才能表现出均匀分布的特征,在一段短的时间内,经常产生一些不均匀。(如果是均匀的,那么买彩票就能根据以前出现的号码推断以后出现的号码。) 如果用随机数生成平面内的粒子坐标,将会得到不太均匀分布,这里经过一番思考,
因为概率问题,所以需要测试一下python的随机数分布。到底是平均(均匀分布,还是正态(高斯)分布。测试代码如下:#! /usr/bin/env python #coding=utf-8 # ================================= # Describe : 测试random随机数分布 # D&P Author By: 常
转载 2023-05-22 11:48:29
177阅读
unifrnd函数较详细解释均匀分布随机数: 均匀分布是指整个样本空间中的每一个样本点对应的概率(密度)都是相等的。根据样本空间是否连续,又分为离散均匀分布和连续均匀分布均匀分布可以算作是最简单的概率分布。从均匀分布中进行采样,即生成均匀分布随机数,几乎是所有采样算法都需要用到的基本操作。1.unifrnd(3,5) 产生一个3~5的均匀随机数>> unifrnd(3,5) ans
## Python 检验均匀分布的实现流程 ### 1. 简介 在开始介绍Python如何检验均匀分布之前,我们先来了解一下均匀分布均匀分布是一种概率分布,它的概率密度函数在一个有限区间内的取值是相等的。在统计学中,我们常常需要检验数据是否服从均匀分布,以确定数据的分布情况。 在Python中,我们可以使用SciPy库来实现对数据进行均匀分布的检验。SciPy是一个开源的Python科学计算
原创 2023-09-16 11:49:07
800阅读
# Python中的均匀分布矩阵 ## 1. 引言 在统计学和概率论中,均匀分布是指概率密度函数上各个数值的概率相等的一种分布均匀分布可以应用于许多领域,如随机数生成、模拟实验、数据采样等。Python作为一门强大的编程语言,提供了丰富的工具和库来处理均匀分布矩阵。 在本篇文章中,我们将介绍如何使用Python生成均匀分布矩阵,并提供相关的代码示例。我们还将通过关系图和序列图来展示生成均匀
原创 2023-12-28 08:54:37
119阅读
# 在Python中实现均匀分布抽样 均匀分布抽样是数据分析和机器学习中一种常用的方法。简单来说,就是从一组数据中随机抽取样本,使得每个样本被选中的概率相同。本文将带你一步一步地实现均匀分布抽样,适合初学者学习。 ## 整体流程 以下是实现均匀分布抽样的步骤,清晰有序,有助于你理解每一步的目标和内容。 | 步骤 | 描述
原创 10月前
111阅读
ListView默认的分页是先从数据源取得所有数据,然后再截取当前页面的部分,在数据量非常大的情况下效率非常低,因此默认的分布基本不能用。应该是只从数据源取得要显示的数据即可。SQL中语句中取得分页数据的方法为:Select * ,ROW_NUMBER() over(order by 排序字段) as rownum From Table. ROW_NUMBER()函数是SQL2005之后提供的一个
离散概率分布,即离散型随机变量的概率分布,与其相对的是连续概率分布。显然,离散往往意味着与自然数密切相关,本文下面介绍几种常见的离散概率分布及其Python运用。一、离散均匀分布:掷骰子均匀分布分为离散与连续两种情况,这里介绍离散的情况。离散型均匀分布指有限个数值拥有相同的概率的分布,比如掷骰子。假设实验结果共有n种可能,其分布列为 ,即每种情况发生的可能性相同。二、二点分布(伯努利分布
  • 1
  • 2
  • 3
  • 4
  • 5