一、降维算法的主要的目的 1、降维可以减少数据共线性,减少冗余特征,提高算法运行效率 2、可视化需要二、主要的降维算法三、降维算法的主要思想 在高维数据中,有一部分特征是不带有有效信息的,还有一部分特征之间存在共线性(特征间有线性
转载
2023-10-31 18:48:39
140阅读
一、数据降维了解1.1、数据降维原理:机器学习领域中所谓的降维就是指采用某种映射方法,将原高维空间中的数据点映射到低维度的空间中。降维的本质是学习一个映射函数 f : x->y,其中x是原始数据点的表达,目前最多使用向量表达形式。 y是数据点映射后的低维向量表达,通常y的维度小于x的维度(当然提高维度也是可以的)。f可能是显式的或隐式的、线性的或非线性的;1.2、不进行数据降维的可能的影响:
转载
2023-06-16 14:30:26
204阅读
1.概述降维算法中的“降维”,指的是:降低特征矩阵中特征的数量。 降维的目的是:让算法运算更快,效果更好,还有另一种需求:数据可视化。SVD和PCA(主成分分析)是矩阵分解算法中的入门算法。PCA与SVD我们希望能够找出一种方法来帮助我们衡量特征上所带的信息,让我们在姜维的过程中,即能够减少特征的数量,又能够保留大部分的信息——将那些带有重复信息的特征合并,并删除那些带有无效信息的特征等——逐渐创
转载
2024-01-29 12:57:41
26阅读
局部线性嵌入 (Locally linear embedding)是一种非线性降维算法,它能够使降维后的数据较好地保持原有 流形结构 。LLE可以说是流形学习方法最经典的工作之一。很多后续的流形学习、降维方法都与LLE有密切联系。 如下图,使用LLE将三维数据(b)映射到二维(c)之后,映射后
转载
2023-07-20 23:42:05
228阅读
LLE局部线性嵌入,Locally Linear Embedding(LLE)是另一个功能强大的非线性降维(nonlinear dimensional reduction,NLDR)技术。它是一个流形学习技术,并不基于投影。简单地说,LLE工作的方式是:首先衡量每个训练实例与它最近的邻居们(closest neighbors,c.n.)的线性相关程度,然后在这些局部关系可以得到最好地保存的情况下,
转载
2024-03-19 10:28:42
50阅读
降维是机器学习处理高维数据的必要手段,也是发掘数据价值的关键路径。它是一种简化复杂数据集以便更容易处理的方法,目标是将高维的数据投影或者转换到低维空间,同时尽可能保留原数据中的关键信息。目前常用的降维技术有主成分分析(PCA)、线性判别分析(LDA)、奇异值分解(SVD)等,可以帮助我们减少计算的复杂性,提高模型的性能和效率。这次我就整理了一部分数据降维相关的论文以及常用降维技术的Python示例
不仅仅是大量数据处理冗余需要降维技术,在特征选择的时候往往也会用到降维技术(比如在预测用户行为的时候可能根据相关性剔除一些特征),它可能会对模型带来不稳定的提升(针对具体数据集),总结介绍降维技术的文章以及实操的一些经验。对于特征选择来说,一般关注前6种即可。为什么要降维随着维度数量的减少,存储数据所需的空间会减少更少的维度导致更少的计算/训练时间当我们有一个大的维度时,一些算法的表现不佳。因此,
转载
2024-09-27 14:50:57
68阅读
网上关于各种降维算法的资料参差不齐,同时大部分不提供源代码。这里有个 GitHub 项目整理了使用 Python 实现了 11 种经典的数据抽取(数据降维)算法,包括:PCA、LDA、MDS、LLE、TSNE 等,并附有相关资料、展示效果;非常适合机器学习初学者和刚刚入坑数据挖掘的小伙伴。01 为什么要进行数据降维?所谓降维,即用一组个数为 d 的向量 Zi 来代表个数
转载
2024-04-24 13:56:36
40阅读
在原始的空间中,包含冗余信息以及噪音信息,在实际应用中总会产生误差,降低了准确率,我们希望减少冗余信息所造成的误差,提升识别精度。又或者希望通过降维算法寻找内部的本质结构特征。数据降维的目的:维度降低便于可视化和计算,深层次的含义在于有效信息的特征提取以及无用信息的抛弃。线性映射:PCA以及LDA:PCA:通过某种线性投影,将高维数据映射到低维空间中,并希望在所投影后的维度数据方差最大,以此使用较
转载
2023-12-26 17:30:18
23阅读
在现实应用中,许多学习方法都涉及距离计算,而高维空间会给距离计算带来很大的麻烦。例如当维数很高时,甚至连计算内积都很不容易。 这实际上,是所有机器学习都面临的严重障碍,这被称为“维数灾难(即样本非常洗漱,距离计算很困难)”。而缓解维数灾难的两个普遍做法是降维和特征选择。降维指的是:通过某种数学变换将原始高维属性空间转变为一个低维子空间,在这个低维的子空间中,样本密度大幅度提高,距离计算也变得很容
转载
2024-05-12 17:34:56
36阅读
数据降维数据降维在机器学习中非常有用,可以用来舍弃数据中一些区分度较小的特征,转化数据的观察视角,使其在更少量的特征维度上也有较好的表现。数据降维也可以用在将高维数据可视化的操作中,这都是不可或缺的重要算法,PCAPCA(Principal Components Analysis)主成分分析法,是一种常用的数据降维算法。PCA的主要思路,是选取数据特征中一些较低维度的空间,让数据在这些空间上的方差
转载
2023-07-31 12:10:25
183阅读
降维算法分为线性和非线性两大类,主成分分析PCA属于经典的线性降维,而t-SNE, MDS等属于非线性降维。在非线性降维中,有一个重要的概念叫做流形学习manifold learing。首先来看下什么叫做流形,流形是一般几何对象的总称,包括各种维度的曲线和曲面,简单理解就是数据本身的分布满足一定的几何特征,以下图中的"瑞士卷"为例可以看到,在三维空间中,样本点的分布构成了一个瑞士卷的形状,这个瑞士
原创
2022-06-21 09:45:12
439阅读
欢迎关注”生信修炼手册”!流形分析作为非线性降维的一个分支,拥有多种算法,常见的算法列表如下流形分析的要点在
原创
2022-06-21 09:07:56
200阅读
本文包括两部分,使用python实现PCA代码及使用sklearn库实现PCA降维,不涉及原理。总的来说,对n维的数据进行PCA降维达到k维就是:对原始数据减均值进行归一化处理;求协方差矩阵;求协方差矩阵的特征值和对应的特征向量;选取特征值最大的k个值对应的特征向量;经过预处理后的数据乘以选择的特征向量,获得降维结果。 实验数据数据data.txt使用[2]中编写的数据,以下是部分数据截
转载
2023-08-10 11:37:47
229阅读
数据降维简介数据降维即对原始数据特征进行变换,使得特征的维度减少。依据降维过程是否可以用一个线性变换表示,降维算法可以分为线性降维算法和非线性降维算法,下图展示了各种降维算法及其类别:降维的必要性:多重共线性和预测变量之间相互关联。多重共线性会导致解空间的不稳定,从而可能导致结果的不连贯。高维空间本身具有稀疏性。一维正态分布有68%的值落于正负标准差之间,而在十维空间上只有2%。过多的变量,对查找
转载
2023-08-28 19:34:20
406阅读
原理: 线性判别分析(Linear Discriminant Analysis,简称LDA)是一种经典的监督学习的数据降维方法,也叫做Fisher线性判别(Fisher Linear Discriminant,FLD),是模式识别的经典算法 ,它是在1996年由Belhumeur引入模式识别
数据降维简介降维就是一种对高维度特征数据预处理方法。降维是将高维度的数据保留下最重要的一些特征,去除噪声和不重要的特征,从而实现提升数据处理速度的目的。 降维具有如下一些优点:减少所需的存储空间。加快计算速度(例如在机器学习算法中),更少的维数意味着更少的计算,并且更少的维数可以允许使用不适合大量维数的算法。去除冗余特征,例如在以平方米和平方公里在存储地形尺寸方面,两者一起用没有意义(数据收集有缺
转载
2023-11-20 00:12:45
466阅读
机器学习领域中所谓的降维就是指采用某种映射方法,将原高维空间中的数据点映射到低维度的空间中。降维的本质是学习一个映射函数 f : x->y,其中x是原始数据点的表达, y是数据点映射后的低维向量表达,通常y的维度小于x的维度(当然提高维度也是可以的)。f可能是显式的或隐式的、线性的或非线性的。使用降维的原因:压缩数据以减少存储量。去除噪声的影响从数据中提取特征以便
转载
2023-05-18 16:10:22
417阅读
1.PCA主成分分析PCA是不考虑样本类别输出的无监督降维技术,实现的是高维数据映射到低维的降维。PCA原理这个介绍的不错:线性代数矩阵性质背景:特征值表示的是矩阵在特征值对应的特征向量方向上的伸缩大小;步骤:1)组成数据矩阵def get_date():
m_vec = np.array([0, 0, 0])
cov_vec = np.array([[1, 0, 0], [0,
转载
2024-05-20 10:44:14
0阅读
sklearn中的降维算法1. PCA与SVD sklearn中降维算法都被包括在模块decomposition中,这个模块本质是一个矩阵分解模块。在过去的十年中,如果要讨论算法进步的先锋,矩阵分解可以说是独树一帜。矩阵分解可以用在降维,深度学习,聚类分析,数据预处理,低纬度特征学习,推荐系统,大数据分析等领域。在2006年,Netflix曾经举办了一个奖金为100万美元的推荐系统算
转载
2024-01-08 14:23:47
59阅读