【前言】:你已经了解了如何定义神经网络,计算loss值和网络里权重的更新。现在你也许会想数据怎么样?目录:一.数据二.训练一个图像分类器1. 使用torchvision加载并且归一化CIFAR10的训练和测试数据集2. 定义一个卷积神经网络3. 定义一个损失函数4. 在训练样本数据上训练网络5. 在测试样本数据上测试网络三.在GPU上训练四.在多个GPU上训练五.还可以学哪些?一、 数据通常来说,
转载
2024-08-22 13:34:29
8阅读
简介:分类是指利用数据的特性将其分成若干类型的过程。监督学习分类器就是用带标记的训练数据建立一个模型,然后对未知数据进行分类。 一、简单分类器首先,用numpy创建一些基本的数据,我们创建了8个点;查看代码X = np.array([[3, 1], [2, 5], [1, 8], [6, 4], [5, 2], [3, 5], [4, 7], [4, -1]])给这8个点的数据赋予默认的
转载
2023-06-20 13:32:46
545阅读
对于计算机视觉,我们已经创建了一个名为torchvision的包,该包含有支持加载类似Imagenet、CIFAR10,MNIST等公共数据集的数据加载模块torchvision.datasets和支持加载图像数据转换模块torch.utils.data.DataLoader. 对于本教程,我们使用公共数据集CIFAR10,它包含10个类别:airplane、automobile、bird、cat
转载
2023-08-09 19:23:46
87阅读
最近在看这本书,觉得里面虫子分类器也值得试试实现,因为这个方法已经包含了神经网络的核心思想。以下是实现的过程。按照《Python神经网络编程》(异步图书出版)第一章虫子分类器训练的过程,模仿书中第二章的3层神经网络的实现过程,来构建一个可运行的虫子分类器。首先,构造出来分类器的框架,包含训练和查询.In [ ]: class BugClassifier:
def __i
转载
2023-11-06 13:06:11
58阅读
1. Introduction本文基于前文说的朴素贝叶斯原理,参考圣地亚哥州立大学的实验编写了一个简单的朴素贝叶斯分类器,并利用测试数据进行了测试。项目地址:2. 分类器编写2.1数据说明采用“adult”数据集,输入文件是adult.data,测试文件是adult.test。数据中一行为一个条目,表示一个人数据集中的变量变量名意义age
年龄
type_employer
职业类型,个体,政府等等
转载
2024-07-08 10:14:17
28阅读
函数分类: 1 不带参函数 2 带参函数 默认带参函数 关键字参数 可变参数 字典参数 3 递归函数 4 匿名函数 1-1 不带参数函数
表示该函数不需要传递参数
def func():
print("hello world!")2-1 默认带参函数
表示该函数自带赋值了的参数,如果不传,则使
转载
2023-05-26 15:14:42
157阅读
文章导航1.收集正样本2.处理正样本3.收集负样本4.生成描述文件5.训练分类器 1.收集正样本这里需要注意的是,正样本图需要裁剪,使目标物体轮廓很清晰,且正样本图越多越好。2.处理正样本将正样本图片转为灰度图,方便后续处理。def convert_gray(f, **args): # 图片处理与格式化的函数
rgb = io.imread(f) # 读取图片
gray =
转载
2024-03-03 10:11:20
157阅读
你已经知道怎样定义神经网络,计算损失和更新网络权重。现在你可能会想,那么,数据呢?通常,当你需要解决有关图像、文本或音频数据的问题,你可以使用python标准库加载数据并转换为numpy array。然后将其转换为 torch.Tensor。对于图像,例如Pillow,OpenCV对于音频,例如scipy和librosa对于文本,原生Python或基于Cython的加载,或NLTK和SpaCy针对
转载
2023-07-06 13:45:42
62阅读
目录内容:情景带入:使用Python实现线性分类器内容:1. 建立机器学习算法的直觉性2. 使用Numpy, Pandas, Matplotlib读取数据,处理数据,可视化数据.3. 使用python实现一个线性分类器 情景带入:我们将输入的信号与对应的权值进行乘法运算,得到的结果进行加法运算,得到输出结果.通过对比输出结果与阈值的相对大小,对数据进行分类.这就是经典的二分类问题.我们用
转载
2023-08-14 22:43:12
119阅读
这篇是我暂时学的教程里的所有东西了,我也都加上了我的理解。但SVM是门学问,还要继续学的更深一点
SVM分类器里面的东西好多呀,碾压前两个。怪不得称之为深度学习出现之前表现最好的算法。 今天学到的也应该只是冰山一角,懂了SVM的一些原理。还得继续深入学习理解呢。 一些关键词:&nb
转载
2023-11-28 21:16:52
7阅读
#感知器逻辑:一个二值分类问题,分别记为1(正类别)和-1(负类别).定义激励函数z=wx (w为权值,x为输入值),当Z大于阈值时为1类,否则为-1类 #用Python实现感知器学习算法。步骤:1、将权重初始化为0或一个极小的随机数 2、迭代所有训练样本,计算出输出值Y,更新权重。 import numpy as np class Perceptron(object): #class 创建类 d
转载
2023-10-24 00:12:53
87阅读
题目: 线性分类器(line) 【题目描述】 考虑一个简单的二分类问题——将二维平面上的点分为A和B两类。 训练数据包含n个点,其中第i个点(1≤i≤n)可以表示为一个三元组(x,y,type),即该点的横坐标、纵坐标和类别。 在二维平面上,任意一条直线可以表示为 θ₀+θ₁x+θ₂y=0的形式,即由θ₀,θ₁,θ₂三个参数确定该直线,且满足θ₀,θ₁不同时为0。 基于这n个已知类别的
转载
2023-12-18 22:08:12
25阅读
作者 | 荔枝boy【前言】:你已经了解了如何定义神经网络,计算loss值和网络里权重的更新。现在你也许会想数据怎么样?目录:一.数据二.训练一个图像分类器1. 使用torchvision加载并且归一化CIFAR10的训练和测试数据集2. 定义一个卷积神经网络3. 定义一个损失函数4. 在训练样本数据上训练网络5. 在测试样本数据上测试网络三.在GPU上训练四.在多个GPU上训练五.还可以学哪些?
转载
2023-12-29 18:39:43
28阅读
朴素贝叶斯分类器文章目录朴素贝叶斯分类器一、贝叶斯分类器是什么?贝叶斯判定准则朴素贝叶斯分类器举个栗子二、相关代码1.数据处理2.生成朴素贝叶斯表(字典)关于如何判断属性的连续或离散性根据朴素贝叶斯表计算预测标签总结 一、贝叶斯分类器是什么?贝叶斯分类器是以贝叶斯决策论为基础的一类分类器。和频率决策论不同,贝叶斯决策论使用后验概率来计算将某个数据data分类为某一类c的风险概率。对分类任务来说,在
转载
2024-05-29 16:20:23
64阅读
何为分类分析在机器学习和统计中,分类是基于包含其类别成员资格已知的观察(或实例)的训练数据集来识别新观察所属的一组类别(子群体)中的哪一个的问题。 例如,将给定的电子邮件分配给“垃圾邮件”或“非垃圾邮件”类,并根据观察到的患者特征(性别,血压,某些症状的存在或不存在等)为给定患者分配诊断。 分类是模式识别的一个例子。 在机器学习的术语中,分类被认为是监督学习的一个实例,即学习可以获得正确识别的观察
转载
2023-08-30 23:23:54
72阅读
利用python进行数据分析,需要了解一些基本的方法,比如掌握回归分析的方法,通过线性回归和逻辑回归,其实你就可以对大多数的数据进行回归分析,并得出相对精确地结论。这部分需要掌握的知识点如下: 回归分析:线性回归、逻辑回归 基本的分类算法:决策树、随机森林、朴素贝叶斯…… 基本的聚类算法:k-means…… 特征工程基础:如何用特征选择优化模型 Python 数据分析包:scipy、
转载
2023-07-02 23:06:50
44阅读
以下内容参考CS231n。上一篇关于分类器的文章,使用的是KNN分类器,KNN分类有两个主要的缺点:空间上,需要存储所有的训练数据用于比较。时间上,每次分类操作,需要和所有训练数据比较。本文开始线性分类器的学习。和KNN相比,线性分类器才算得上真正具有实用价值的分类器,也是后面神经网络和卷积神经网络的基础。 线性分类器中包括几个非常重要的部分:权重矩阵W,偏差向量b评分函数损失函数
正则
转载
2023-06-29 15:10:07
82阅读
朴素贝叶斯分类器_以python为工具【Python机器学习系列(十三)】 文章目录1. 朴素贝叶斯算法原理2. sklearn提供的朴素贝叶斯算法3. 伯努利朴素贝叶斯 BernoulliNB()4. 多项式朴素贝叶斯 MultinomialNB()5. 高斯朴素贝叶斯 GaussianNB() ʚʕ̯•͡˔•̯᷅ʔɞʚʕ̯•͡˔•̯᷅ʔɞʚʕ̯•͡˔•̯᷅ʔɞʚʕ̯•͡˔•̯᷅ʔɞ
转载
2023-10-10 16:41:00
72阅读
使用流程及应用展示:1. 选择图片:控制台版本从命令行输入当直接回车时将读取默认路径图片(./assets/生活照-武.jpg),相对路径是从打开程序的文件夹开始的,若输入路径无效或不可读将继续询问输入GUI 从文件浏览器选择也可以直接在输入框输入,当确认选择后点下一继续2. 选择分类基准点控制台在命令行输入输入格式为’x, y’,即输入横坐标加逗号加纵坐标,前后及坐标逗号间空格均无严格要求,回车
转载
2023-10-10 06:34:47
39阅读
监督学习多用来解决分类问题,输入的数据由特征和标签两部分构成。我们由浅入深地介绍一些经典的有监督的机器学习算法。这里介绍一些比较简单容易理解的处理线性分类问题的算法。线性可分&线性不可分首先,什么是线性分类问题?线性分类问题是指,根据标签确定的数据在其空间中的分布,可以使用一条直线(或者平面,超平面)进行分割。如下图就是一个线性分类问题。这样的问题也叫做线性可分的。当然,也存在着许多线性不
转载
2023-07-06 20:24:53
115阅读