简介:分类是指利用数据的特性将其分成若干类型的过程。监督学习分类器就是用带标记的训练数据建立一个模型,然后对未知数据进行分类。 一、简单分类器首先,用numpy创建一些基本的数据,我们创建了8个点;查看代码X = np.array([[3, 1], [2, 5], [1, 8], [6, 4], [5, 2], [3, 5], [4, 7], [4, -1]])给这8个点的数据赋予默认的
转载
2023-06-20 13:32:46
545阅读
1. Introduction本文基于前文说的朴素贝叶斯原理,参考圣地亚哥州立大学的实验编写了一个简单的朴素贝叶斯分类器,并利用测试数据进行了测试。项目地址:2. 分类器编写2.1数据说明采用“adult”数据集,输入文件是adult.data,测试文件是adult.test。数据中一行为一个条目,表示一个人数据集中的变量变量名意义age
年龄
type_employer
职业类型,个体,政府等等
转载
2024-07-08 10:14:17
28阅读
最近在看这本书,觉得里面虫子分类器也值得试试实现,因为这个方法已经包含了神经网络的核心思想。以下是实现的过程。按照《Python神经网络编程》(异步图书出版)第一章虫子分类器训练的过程,模仿书中第二章的3层神经网络的实现过程,来构建一个可运行的虫子分类器。首先,构造出来分类器的框架,包含训练和查询.In [ ]: class BugClassifier:
def __i
转载
2023-11-06 13:06:11
58阅读
何为分类分析在机器学习和统计中,分类是基于包含其类别成员资格已知的观察(或实例)的训练数据集来识别新观察所属的一组类别(子群体)中的哪一个的问题。 例如,将给定的电子邮件分配给“垃圾邮件”或“非垃圾邮件”类,并根据观察到的患者特征(性别,血压,某些症状的存在或不存在等)为给定患者分配诊断。 分类是模式识别的一个例子。 在机器学习的术语中,分类被认为是监督学习的一个实例,即学习可以获得正确识别的观察
转载
2023-08-30 23:23:54
72阅读
关于编码
ascii : 8位 1字节 表示1个字符
unicode 32位 4个字节 表示一个字符
utf- 8 1个英文 8位,1个字节
欧洲 16位 两个字节 表示一个字符
亚洲 24位 三个字节 表示一个字符
转载
2023-05-24 16:23:44
172阅读
目录一、引言二、分类器(一)代码:1、导入库:2、数据集的加载、清洗、训练以及预测 3、 计算F1-Score值 编辑4、 计算fpr和tpr 5、绘制ROC曲线 (二)重要注释:1、np.random.randn()2、np.random.randint()3、fit_transform()4、fit()5、transform()6、fit_transfo
转载
2023-07-28 21:43:23
150阅读
K近邻分类器(KNN)KNN:通过计算待分类数据点与已有数据集中的所有数据点的距离。取距离最小的前K个点,根据少数服从多数的原则,将这个数据点划分为出现次数最多的那个类别。 例如:图中的X点,通过计算X于所以分类点的欧式距离,然后进行排序,选择最近的前5个点做投票。可以发现X离W1分类区域点的数量最多,那么我们就认为X的分类为W1.&n
转载
2023-11-02 01:19:17
67阅读
Python 实现朴素贝叶斯分类器代码解析最近在学李航博士的《统计学习方法》,wds2006sdo在自己的博客中给出了具体实现的算法,但是由于相关改动,代码放到python3中会有很多地方报错,本篇文章将修改正确后的代码pow出来,并且给与详细的解析。代码解析首先给出原代码链接:raw_code 下文首先会给出修改后的正确代码和代码的详细解释,最后给出具体的修改细节说明数据读取print ('St
转载
2023-10-26 17:18:56
108阅读
# 如何实现LR分类器的Python代码
在机器学习中,逻辑回归(Logistic Regression, LR)是一种广泛使用的分类算法。对于初学者来说,能够实现一个简单的LR分类器是一项重要的技能。本文将详细介绍实现LR分类器的全过程,包括步骤、代码示例和必要的解释。
## 实现流程
首先,我们将整个流程分解为以下几个步骤:
| 步骤 | 说明
先让看一下文本语料:使用的方法思路: 1、中文分词加一些简单的预处理 2、结构化表示-Bunch 3、构建词向量空间,权重策略–TF-IDF 4、分类器选择-贝叶斯分类器 5、评价 第一步:import sys
import os
import jieba
import importlib
importlib.reload(sys)
#保存至文件
def savefile(savepat
转载
2023-06-16 14:25:01
109阅读
图像分类如果我们想训练一个图像分类器,我们很难想出一个具体的算法步骤将每幅图片都能正确的分类,那么这种情况下我们可以采用数据驱动的方法,利用机器学习来训练分类器KNN一种方法是把全部数据和标签记下来,然后对于一组新的数据,我们去寻找最相近数据的标签作为预测标签那么我们如何去定义所谓的“相近”呢?一种方法是用L1距离,简单的描述了对应像素值的差如果我们站在一个高维的角度来看,我们可以把图片看做分布在
转载
2023-11-09 00:13:42
179阅读
GBDT概述GBDT 是梯度提升树(Gradient Boosting Decison Tree)的简称,GBDT 也是集成学习 Boosting 家族的成员,但是却和传统的 Adaboost 有很大的不同。回顾下 Adaboost,我们是利用前一轮迭代弱学习器的误差率来更新训练集的权重,这样一轮轮的迭代下去。GBDT 也是迭代,使用了前向分布算法,同时迭代思路和 Adaboost 也
转载
2024-01-18 14:19:55
69阅读
1. 线性分类器:通过线性映射,将数据分到对应的类别中①线性函数:f(xi, W, b)= W * xi + bW为权值(weights),b为偏移值(bias vector),xi为数据假设每个图像数据被拉长为一个长度为D的列向量,其
转载
2023-06-29 15:32:32
82阅读
一 高斯朴素贝叶斯分类器代码实现网上搜索不调用sklearn实现的朴素贝叶斯分类器基本很少,即使有也是结合文本分类的多项式或伯努利类型,因此自己写了一遍能直接封装的高斯类型NB分类器,当然与真正的源码相比少了很多属性和方法,有兴趣的可以自己添加。代码如下(有详细注释):class NaiveBayes():
‘‘‘高斯朴素贝叶斯分类器‘‘‘
def __init__(self):
self._X_
转载
2023-12-14 11:22:10
122阅读
KNN学习(K-Nearest Neighbor algorithm,K最邻近方法 )是一种统计分类器,对数据的特征变量的筛选尤其有效。基本原理KNN的基本思想是:输入没有标签(标注数据的类别),即没有经过分类的新数据,首先提取新数据的特征并与測试集中的每一个数据特征进行比較;然后从測试集中提取K个最邻近(最类似)的数据特征标签,统计这K个最邻近数据中出现次数最多的分类,将其作为新的数据类别。
转载
2024-04-25 10:40:07
23阅读
文本分类(Document Classification / Document Categorization)▶ 分类方法1——基于规则(Hand-coded)精度高开销大▶ 分类方法2——机器学习(Machine learning)是一种计算机算法,该算法通过对数据做自动分析来获得规律,并利用这些规律对未知数据进行预测。它是人工智能的一个分支。有监督学习无监督的学习训练集包括输入和由
转载
2023-08-10 14:37:09
49阅读
贝叶斯分类算法是统计学是一种概率分类方法,朴素贝叶斯分类时贝叶斯分类中最简单的一种。利用贝叶斯公式根据某特征的先验概率计算出其后延概率,然后选择具有最大后延概率的类作为该特征所属的类。朴素贝叶斯,称之为“朴素”,是因为整个形式化过程只做了最原始、最简单的假设,具体假设如下:特征之间相互独立每个特征同等重要1. 概率相关先验概率: 比如向女生表白成功的概率是20%,记为P(A)=20% 条件概率:在
1.朴素贝叶斯概念在所有的机器学习分类算法中,朴素贝叶斯和其他绝大多数的分类算法都不同。对于大多数的分类算法,比如决策树,KNN,逻辑回归,支持向量机等,他们都是判别方法,也就是直接学习出特征输出Y和特征X之间的关系,要么是决策函数Y=f(X),要么是条件分布P(Y|X)。但是朴素贝叶斯却是生成方法,也就是直接找出特征输出Y和特征X的联合分布P(X,Y),然后用P(Y|X)=P(X,Y)/P(X)
转载
2024-01-02 12:47:07
98阅读
0. 前言贝叶斯分类是一类分类算法的总称,这类算法均以贝叶斯定理为基础,故统称为贝叶斯分类。本文由本人学习贝叶斯分类器过程中的笔记,再加上使用Python进行文本分类实战组成。1. 贝叶斯决策论(Bayesian decision theory)贝叶斯决策论是概率框架下实施决策的基本方法。对于分类任务来说,在所有相关概率都已知的情况下,贝叶斯决策论考虑如何基于这些概率和误判损失来选择最优的类别标记
转载
2024-07-08 10:10:20
19阅读
理论基础我没复制过来,我只在代码基础上加了注释。注释比较基础也比较详细,我也是初学因此该注释为小白学习自用,有错误敬请指出。import math
import random
all_num = 0 # 样本总数
cla_num = {} # 字典,分类的集合,里面是类别
cla_tag_num = {} # 字典,分类的集合,里面元素还有字典
landa = 0.6
转载
2023-06-19 05:49:38
73阅读