# 使用 Python 封装 GBDT 模型入门指南 在机器学习中,GBDT(梯度提升决策树)是一种常用且强大的算法。在这篇文章中,我们将介绍如何在 Python封装 GBDT 模型,使其更易于使用和集成。对于刚入行的小白们,这将是一个循序渐进的过程。 ## 流程介绍 以下是实现 Python 封装 GBDT 模型的步骤概览: | 步骤 | 描述
原创 2024-08-13 04:17:17
41阅读
装饰器装饰器本质上是一个Python函数,它可以让其他函数在不需要做任何代码变动的前提下增加额外功能,装饰器的返回值也是一个函数对象。它经常用于有切面需求的场景,比如:插入日志、性能测试、事务处理、缓存、权限校验等场景。装饰器是解决这类问题的绝佳设计,有了装饰器,我们就可以抽离出大量与函数功能本身无关的雷同代码并继续重用。概括的讲,装饰器的作用就是为已经存在的对象添加额外的功能。def foo()
测试奇谭,BUG不见。这一场主讲python的面向对象部分——封装、多态和继承。目的:掌握Python面向对象的三个核心概念。封装01 什么是封装?**封装的目的是,保护隐私。**通俗的讲:不想让别人知道你的东西。于是,便有了两个概念:普通属性(变量)和私有属性(变量)。02 为什么要用封装?当你不希望外界可以直接修改一些数据时。比如用户的身份证号等信息属于用户的隐私,肯定不能直接暴露给外界直接访
转载 2023-12-21 07:04:35
21阅读
GBDT,梯度提升树属于一种有监督的集成学习方法,与之前学习的监督算法类似,同样可以用于分类问题的识别和预测问题的解决。该集成算法体现了三个方面的又是,分别是提升Boosting、梯度Gradient、决策树Decision Tree。“提升”是指将多个弱分类器通过线下组合实现强分类器的过程;“梯度”指的是在Boosting过程中求解损失函数时增加了灵活性和便捷性,“决策树”是指算法所使用的弱分类
转载 2023-06-09 22:43:08
113阅读
Table of Contents1  GBDT概述2  GBDT回归(提升树)2.1  算法流程2.2  python实现3  GBDT分类3.1  算法流程3.2  python实现3.3  多分类GBDT概述\(f_{k-1}(x)\
转载 2023-06-26 14:12:07
181阅读
Python机器学习算法实现Author:louwillMachine Learning Lab          时隔大半年,机器学习算法推导系列终于有时间继续更新了。在之前的14讲中,笔者将监督模型中主要的单模型算法基本都过了一遍。预计在接下来的10讲中,笔者将努力更新完以GBDT代表的集成学习模型,以EM算法、CRF和隐马
转载 2023-10-10 10:48:54
96阅读
GBDT,梯度提升树属于一种有监督的集成学习方法,与之前学习的监督算法类似,同样可以用于分类问题的识别和预测问题的解决。该集成算法体现了三个方面的又是,分别是提升Boosting、梯度Gradient、决策树Decision Tree。“提升”是指将多个弱分类器通过线下组合实现强分类器的过程;“梯度”指的是在Boosting过程中求解损失函数时增加了灵活性和便捷性,“决策树”是指算法所使用的弱分类
一、算法简介:GBDT 的全称是 Gradient Boosting Decision Tree,梯度提升树,在传统机器学习算法中,GBDT算的上是TOP前三的算法。想要理解GBDT的真正意义,那就必须理解GBDT中的Gradient Boosting和Decision Tree分别是什么?1. Decision Tree:CART回归树 首先,GBDT使用的决策树是CART回归树,无论是处理回归
转载 2023-09-27 12:15:54
130阅读
说明:这是一个机器学习实战项目(附带数据+代码+文档+视频讲解),如需数据+代码+文档+视频讲解可以直接到文章最后获取。1.项目背景GBDT是Gradient Boosting Decision Tree(梯度提升树)的缩写。GBDT分类又是建立在回归树的基础上的。本项目应用GBDT算法实现多分类模型。2.数据获取本次建模数据来源于网络(本项目撰写人整理而成),数据项统计如下: 数据详情
GBDT用于分类和回归及其python实现1.GBDT回归1.1基本思想1.2算法流程:2.GBDT二分类2.1基本思想2.2算法流程2.3python实现2.3.1回归树2.3.2GBDT实现 adaboost用于分类的时候其实是模型为加法模型,损失函数为指数损失函数的算法,用于回归的时候是是损失函数为平方误差的损失函数,但是当损失函数为一般损失函数的时候,优化会变得比较复杂,例如我们分类使
随机森林 python实现GBDT python实现Adaboost python实现装袋(bagging)又称自助聚集(boot strap aggregating), 是一种根据均匀分布概率从数据集最中有放回的重复抽样的技术。每个自助样本集都和原始数据集一样大,自助样本D_{i}大约包含63%的原训练数据。决策树桩(decision stump) 仅基于单个特征来做决策,仅包含一层的二叉决策树
转载 2023-07-17 21:52:53
65阅读
作者:王多鱼 作者介绍知乎@王多鱼京东的一名推荐算法攻城狮。主要负责商品推荐的召回和排序模型的优化工作。一、GBDT算法原理Gradient Boosting Decision Tree(GBDT)是梯度提升决策树。GBDT模型所输出的结果是由其包含的若干棵决策树累加而成,每一棵决策树都是对之前决策树组合预测残差的拟合,是对之前模型结果的一种“修正”。梯度提升树既可以用于回归问题(此时被
文章目录1 GBDT算法核心思想2 GBDT算法的数学原理3 GBDT算法数学原理举例梯度提升树中梯度的理解4 使用sklearn实现GBDT算法5 案例:产品定价模型5.1 模型搭建5.1.1 读取数据5.1.2 分类型文本变量的处理5.1.3 提取特征变量和目标变量5.1.4 划分训练集的测试集5.1.5 模型训练及搭建5.2 模型预测及评估6 模型参数介绍知识拓展 1 GBDT算法核心思想
1. GBDT多分类算法1.1 Softmax回归的对数损失函数1.2 GBDT多分类原理2. GBDT多分类算法实例3. 手撕GBDT多分类算法3.1 用Python3实现GBDT多分类算法3.2 用sklearn实现GBDT多分类算法4. 总结5. Reference本文的主要内容概览:1. GBDT多分类算法1.1 Softmax回归的对数损失函数当使用逻辑回归处理多标签的分类问题时,如果一
GBDT 适用范围GBDT 可以适用于回归问题(线性和非线性)其实多用于回归;GBDT 也可用于二分类问题(设定阈值,大于为正,否则为负)和多分类问题RF与GBDT之间的区别与联系1)相同点:都是由多棵树组成最终的结果都由多棵树共同决定。2)不同点:组成随机森林的树可以分类树也可以是回归树,而GBDT只由回归树组成组成随机森林的树可以并行生成(Bagging);GBDT 只能串行生成(Boosti
一、原理篇1.1 温故知新回归树是GBDT的基础,之前的一篇文章曾经讲过回归树的原理和实现。链接如下:回归树的原理及Python实现1.2 预测年龄仍然以预测同事年龄来举例,从《回归树》那篇文章中我们可以知道,如果需要通过一个常量来预测同事的年龄,平均值是最佳选择之一。1.3 年龄的残差我们不妨假设同事的年龄分别为5岁、6岁、7岁,那么同事的平均年龄就是6岁。所以我们用6岁这个常量来预测同事的年龄
转载 2024-04-29 09:45:32
70阅读
GBDT在业界是经常使用的一个算法,面试也经常会问到些八股,不过我做NLP,所以感觉被问的还不算多,但考虑到自己对这个算法的各种原理理解的不够深入,所以还是决定做一下相关的笔记。 结构原理 首先,GBDT的全称为梯度提升决策树,显然这里的boosting(提升)就是我们所熟悉的模型集成的一个思想,另外RF(随机森林)使用的是bagging的集成思想。GBDT的base model为CART树
1.概述 GBDT基于GB算法。GB算法的主要思想是,每次建立模型是在之前建立模型损失函数的梯度下降方向。损失函数是评价模型性能(一般为拟合程度+正则项),认为损失函数越小,性能越好。而让损失函数持续下降,就能使得模型不断调整提升性能,其最好的方法就是使损失函数沿着梯度方向下降。GBDT再此基础上,基于负梯度(当损失函数为均方误差的时候,可以看作是残差)做学习。 2.原理 类似于随机森林
转载 2023-07-17 12:18:52
132阅读
        GBDT(Gradient Boosting Decision Tree) 又叫 MART(Multiple Additive Regression Tree),是一种迭代的决策树算法,该算法由多棵决策树组成,它在被提出之初就和SVM一起被认为是泛化能力(generalization)较强的算法。近些年更因为被用于各大数据竞赛而引起
        之前的很多算法(SVM、朴素贝叶斯等)的学习心得都没有来的及写。由于学校一个横向项目需要(酒店需求预测)考虑使用GBDT来做回归,今天就先写GBDT的心得体会(不久前刚写了随机森林作为铺垫)。这个算法是目前我接触到的算法当中比较难的一个了,但据说效果超级好,毕竟Kaggle竞赛的必备算法哈。      同随机森林
  • 1
  • 2
  • 3
  • 4
  • 5