二分法二分法定义:在一个单调有序的集合中查找元素,每次将集合分为左右两部分,判断解在哪个部分中并调整集合上下界,重复直 到找到目标元素。 优点:时间短,如若超时可以采取这种方法。三分
有一个无序序列[37,99,73,48,47,40,40,25,99,51],先进行排序打印输出,分别尝试插入20/40/41 数值到序列中合适的位置,保证其有序。1、for 循环实现第一种实现,利用嵌套for循环,每次迭代出来的数值进行比较。如果比原表中的数值小,则插入到这个数左面。lst1 = [37,99,73,48,47,40,40,25,99,51]
lst = sorted(lst1
转载
2023-06-13 21:58:53
194阅读
Python 二分法
原创
2023-05-18 10:06:48
178阅读
python二分法、牛顿法求根
二分法求根思路:对于一个连续函数,左值f(a)*右值f(b)如果<0,那么在这个区间内[a,b]必存在一个c使得f(c)=0那么思路便是取中间点,分成两段区间,然后对这两段区间分别再比较,跳出比较的判断便是精确度# 二分法求根
# 函数为exp(x)*lnx - x**2
import math
#
转载
2023-06-17 20:38:41
516阅读
简单二分法
原创
精选
2022-04-28 21:23:01
1052阅读
二分法适用于在一批有序的数列中查找某数;#includeint main(){ int a[10]={-12,0,6,23,56,80,100,110,115}; int n, low, mid, high, found; low=0; high=9; found=0; scanf("%d",&n); while(low { mid=(lo
原创
2022-08-03 17:12:21
254阅读
二分法是比较简单的算法,不过容易写错。所以在这里总结一下。 必然存在的二分法 int a[MAXN]; int indexOf(int l,int r,int val){ while(l<=r){ int mid = l+(r-l)>>1; if ( a[mid] == val ) return m ...
转载
2021-11-02 17:39:00
471阅读
2评论
二分法求方程近似解
原创
2023-05-24 12:07:45
66阅读
# 二分法nums=[13,15,17,23,31,53,74,81,93,102,103,201,303,403,503,777]find_num=503def binary_search(nums,find_num): print(nums) if len(nums) == 0: prin
原创
2019-01-15 17:30:48
414阅读
二分法 二分法有两种,二分查找和二分答案。 二分查找 整数二分 整数二分的实质不在于单调性,而是看区间能否划分为两块,使得一块满足某种性质,而另一块不满足。 1.查找红色区域最后的值(满足条件的最后一个值): check(mid): 1. true → [mid, R]; l = mid 2. ...
转载
2021-07-16 15:07:00
249阅读
2评论
public static void advanceInsertSortWithBinarySearch(int[] arr) { for (int i = 1; i < arr.length; i++) { int temp = arr[i]; int low = 0, high = i - 1; int mid = -1;...
原创
2022-09-28 09:37:33
57阅读
点赞
题目:统计一个数字在排序数组中出现的次数。 示例 1: 输入: nums = [5,7,7,8,8,10], target = 8输出: 2示例 2: 输入: nums = [5,7,7,8,8,10], target = 6输出: 0 一般解法直接暴力用for循环,但是效率不高 我们考虑用二分法解
原创
2022-07-22 14:37:57
113阅读
很经典的算法 不使用递归: 使用递归:
原创
2022-05-29 00:24:14
73阅读
#1、数据必须是有序序列 #2、掐头去尾去取中间 #3、每次查找查找都可以过滤一半的数据 #4、折半查找,二分法查找 lst=[1,4,6,34,45] left=0 right=len(lst)-1 target = 4 post=0 while left<=right: mid = (left ...
转载
2021-09-23 09:12:00
653阅读
2评论
# Python二分法
二分法是一种常用的算法,用于在一个有序数组中查找目标值。这种算法的思想很简单,通过将数组分为两个部分,然后判断目标值在哪一部分,并继续在该部分中查找,直到找到目标值或者确定目标值不存在。
## 二分法原理
二分法的原理基于以下几个步骤:
1. 确定数组的左右边界,即最小索引和最大索引。
2. 计算中间索引:将左右边界相加除以2得到中间索引。
3. 判断中间索引位置的
原创
2023-08-02 12:40:17
140阅读
一. while循环二分 二分查找.每次能排除掉一半的数据.查找的效率非常高.但是局限性比较大,必须是有序的序列才能用二分查找. 要求: 要查找的序列必须是有序序列.#二分法查找某一个数的索引位置
lst = [11,22,33,44,55,66,77,88,99,111,122,133,144,155,166,177,188,199]
n = 122
left = 0
right =
转载
2023-06-16 23:33:26
171阅读
1、实践题目7-1 二分查找 (20 分)输入n值(1<=n<=1000)、n个非降序排列的整数以及要查找的数x,使用二分查找算法查找x,输出x所在的下标(0~n-1)及比较次数。若x不存在,输出-1和比较次数。输入格式:输入共三行:第一行是n值;第二行是n个整数;第三行是x值。输出格式:输出x所在的下标(0~n-1)及比较次数。若x不存在,输出-1和比较次数。输入样例:41 2 3
$array = array(1,2,3,4,11,12,124,1245);//普通查找的方法 $res = Loop($array,12); var_dump($res); function Loop($arr,$v) { $num = 0; $size = count($arr)-1; for($i=0; $i<$size; $i++) {
原创
2012-02-05 12:43:05
408阅读
#二分 二分顾名思义 其实就不断的把东西分为两半 二分自古就有 一尺之棰,日取其半,万世不竭 《庄子·杂篇·天下》 二分在数学中,也有应用,例如零点存在性定理 \(设y=f(x) 如果f(x)在 [a,b]上连续 且 f(a)*f(b)<0 则[a,b]之间存在零点\) 只需要通过不断的二分就可以找 ...
转载
2021-08-06 16:05:00
134阅读
2评论
int cc(int l,int r) (2点需要注意) { int mid=((r-l)>>1)+l; if(l>=r) return -1; (==很关键) if(a[mid]==ans) return mid; if(a[mid]<ans) return cc(mid+1,r); (要不要等号 ...
转载
2021-09-23 18:28:00
252阅读
2评论