引言最近在读西瓜书,查阅了多方资料,恶补了数值代数、统计概率和线代,总算是勉强看懂了西瓜书中的公式推导。但是知道了公式以后还是要学会应用的,几经摸索发现python下的sklearn包把机器学习中经典的算法都封装好了,因此,打算写几篇博客记录一下sklearn包下的常用学习算法的使用,防止自己以后忘了,嘿嘿。1.西瓜书中197页对“”做了详细的解释,以下为摘录:在无监督学习中,训练样本的标
层次算法的主要优点在于我们无需事先知道最终所需集群数量。很遗憾的是,网上并没有很详细的教程讲述如何使用 SciPy 的层次包进行层次。本教程将帮助你学习如何使用 SciPy 的层次模块。命名规则在我们开始之前,我们先设定一下命名规则来帮助理解本篇教程:X - 实验样本(n 乘 m 的数组)n - 样本数量m - 样本特征数量Z - 集群关系数组(包含层次信息)k - 集群数量导
转载 2024-02-29 15:13:06
159阅读
最近使用MDTraj对分子动力学轨迹进行聚类分析,接触到了python中的实现,故将CSDN上一篇关于的博客搬运至此,以作备忘:scipy cluster库简介scipy.cluster是scipy下的一个做的package, 共包含了两类聚方法:矢量量化(scipy.cluster.vq:支持vector quantization 和 k-means 方法层次(scipy.
前言今天试了下用python实现层级,感觉还是有不少问题。转专业的一只小菜鸡,初学代码,写的很简陋,希望各位大牛能指出不足之处。代码输入是一个长度可选的列表。这里用random随机生成,10个数据,并把数据用字母'a'、'b'等依次标记。算法实现中用树结构存储数据。树的每一个节点都是一个数据集,它的左右子树代表该节点包含的两个数据集。计算所有数据相互的距离(x1.value - x2.valu
前言K-means ,介绍了 K-means 算法以及一些优化改进的算法,通过此了解聚类分析,接下来我们进一步的介绍聚类分析的其他方法。本篇代码可见:Github一、层次\quad\quad 层次技术是第二重要的方法。层次方法对给定的数据集进行层次的分解,直到满足某种条件为止,传统的层次算法主要分为两大类算法:凝聚的层次:AGNES算法(AGglomerative N
转载 2023-08-15 14:48:49
564阅读
层次步骤:假设有N个待的样本,对于层次来说,基本步骤就是:1、(初始化)把每个样本归为一,计算每两个之间的距离,也就是样本与样本之间的相似度;2、按一定规则选取符合距离要求的类别,完成间合并;3、重新计算新生成的这个与各个旧之间的相似度;4、重复2和3直到所有样本点都归为一,结束。随机森林步骤:从原始训练集中使用Bootstraping方法随机有放回采样选出m个样本,共进行
层次和DBSCAN  前面说到K-means算法,K-Means是一种分散性算法,本节主要是基于数据结构的算法——层次和基于密度的算法——DBSCAN两种算法。1.层次  下面这样的结构应该比较常见,这就是一种层次的树结构,层次是通过计算不同类别点的相似度创建一颗有层次的树结构,在这颗树中,树的底层是原始数据点,顶层是一个的根节点。  创建这样一棵树的方
转载 2023-08-09 13:08:52
749阅读
层次是数据挖掘和机器学习中的一种常用技术,主要用于将数据点进行层次化的分类。通过这种技术,我们可以将相似的数据点归为一,以便进行分析和挖掘。接下来将详细记录解决“层次python”的过程,包括相关背景、参数解析、调试步骤等方面。 ## 背景定位 在某项目中,我们面临需要对一组数据进行的问题。随着数据量的增加,我们发现简单的算法已难以处理大量复杂的数据样本。经过讨论,决定使
''' 凝聚层次算法:首先假定每个样本都是一个独立的,如果统计出来的数大于期望的数,则从每个样本出发寻找离自己最近的另一个样本, 与之聚集,形成更大的,同时令总数减少,不断重复以上过程,直到统计出来的数达到期望值为止。 凝聚层次算法的特点: 1.数k必须事先已知。借助某些评
写在前面:健忘星人自学笔记,仅供参考简单易懂的阅读资料 层次-概念全解 - 万勇's 前面的文章我们分别介绍了 K-means , 密度,谱,其中谱的难度比较大,要求有一定的矩阵学习基础,今天不妨轻松一下,学习一个较为简单的“层次”。正文:一、层次基本原理层次方法(Hierarchical Clustering),从字面上理解,其
目录0.层次的概念0.1 聚合层次0.2 分裂层次1.凝聚层次算法步骤1.1 算法过程1.2算法案例0.层次的概念 层次和k-means一样都是很常用的方法。层次是对群体的划分,最终将样本划分为树状的结构。他的基本思路是每个样本先自成一,然后按照某种规则进行合并,直到只有一或者某一的样本只有一个点。层次又分为自底而上的聚合层次和自顶而下的分裂
层次层次的概念:层次是一种很直观的算法。顾名思义就是要一层一层地进行层次法(Hierarchicalmethods)先计算样本之间的距离。每次将距离最近的点合并到同一个。然后,再 计算之间的距离,将距离最近的合并为一个大类。不停的合并,直到合成了一个。其中 的距离的计算方法有:最短距离法,最长距离法,中间距离法,平均法等。比如最短距离法,将 的距离定义为
# 实现Python层次 ## 简介 在本篇文章中,我将向你介绍如何在Python中实现层次(Hierarchical Clustering)。作为一名经验丰富的开发者,我会逐步指导你完成这个过程。首先,我们来看一下整个流程。 ## 流程图 ```mermaid flowchart TD A[准备数据] --> B[计算距离矩阵] B --> C[进行层次]
原创 2024-06-03 04:01:25
14阅读
  层次算法分为合并算法和分裂算法。合并算法会在每一步减少中心的数量,产生的结果来自前一步的两个的合并;分裂算法与合并算法原理相反,在每一步增加的数量,每一步产生的结果都将是前一步中心分裂得到的。合并算法现将每个样品自成一,然后根据间距离的不同,合并距离小于阈值的。我用了基于最短距离算法的层次算法,最短距离算法认为,只要两个的最小距离小于阈值,就将
转载 2023-09-05 18:18:46
143阅读
今天,总结一下如何使用层次算法里面的自定义距离度量层次上次已经总结过。 这次仅仅说明层次的距离参数,这里的距离参数可以使用自定义函数。 我们进入该函数的文档页面我们看到linkage的说明文档上面的函数scipy.cluster.hierarchy.linkage(y, method='single', metric='euclidean',optimal_ordering=False
转载 2023-08-24 02:56:28
73阅读
聚类分析(层次聚类分析(Q型和R型)、快速聚类分析)聚类分析的实质:是建立一种分类方法,它能够将一批样本数据按照他们在性质上的亲密程度在没有先验知识的情况下自动进行分类。这里所说的就是一个具有相似性的个体的集合,不同类之间具有明显的区别。 分析的特点:聚类分析是一种探索性的分析,在分类的过程中,人们不必事先给出一个分类的标准,聚类分析能够从样本数据出发,自动进行分类。1.层次聚类分析
转载 2023-08-14 06:51:50
89阅读
MFC浅谈层次算法写文章的起因所用数据集及预处理划分簇的基础思维和结果开发中遇到的一些问题及算法优化预测错误率的算法写在后面的话 写文章的起因本人是一名大二的学生,原本对于人工智能方面的算法就有一定的兴趣,正巧碰上期末课设需要用到层次来完成课设,就顺水推舟,用C++(准确来说是MFC)完成了层次算法的课设,之所以没用python一方面是了解不够另一方面是为了照顾队友吧,然后深刻体会到
转载 2023-12-09 13:11:15
67阅读
BAFIMINARMTOBA0662877255412996FI6620295468268400MI8772950754564138NA2554687540219869RM4122685642190669TO9964001388696690这是一个距离矩阵。不管是scipy还是fastcluster,都有一个计算距离矩阵的步骤(也可以不用)。距离矩阵是冗余的,因为它是对称的。scipy里面的文档好
基于层次算法(Hierarchical Clustering)当不知道应该分为几类时,使用层次类比较适合。层次会构建一个多层嵌套的分类,类似一个树状结构。可以选择一个数量,根据需求对树状图中画一条水平线,得到对应的。但层次法容易受到噪声和数据维度过高的影响。自底向上的从点作为个体簇开始,迭代时每一步合并两个最接近的簇,直到所有样本合并为一簇。算法步骤:每个样本点自成一
转载 2023-12-25 06:26:56
67阅读
最近学习层次算法,厚颜转载一篇博文。 参考:层次算法的原理及实现Hierarchical Clustering层次(Hierarchical Clustering)是算法的一种,通过计算不同类别数据点间的相似度来创建一棵有层次的嵌套树。在树中,不同类别的原始数据点是树的最低层,树的顶层是一个的根节点。模式: 1)自底向上型(agglomerative) 2)自上向
转载 2023-06-21 21:54:15
191阅读
  • 1
  • 2
  • 3
  • 4
  • 5