你遇到过特征超过1000个的数据集吗?超过5万个的呢?我遇到过。是一个非常具有挑战性的任务,尤其是当你不知道该从哪里开始的时候。拥有这么多变量既是一个恩惠——数据量越大,分析结果越可信;也是一种诅咒——你真的会感到一片茫然,无从下手。面对这么多特征,在微观层面分析每个变量显然不可行,因为这至少要几天甚至几个月,而这背后的时间成本是难以估计的。为此,我们需要一种更好的方法来处理高数据,比如本文
学习PCA算法的时候,在网上看到过两个不同版本的计算过程,一直有点迷糊,到底哪个版本才是对的。后来发现,两个版本的计算方法都没错,区别主要在于把每行看作一向量,还是把每列看作一向量。所以本文的主要目的就是总结和对比一下这两种过程略有不同的计算方法。1. 把每行看作一个一向量该计算方法就是我们在之前一篇讲PCA算法的文章中所讲述的方法,其对应Opencv接口中的CV_PCA_DATA_
转载 2024-01-17 15:43:03
181阅读
sklearn中的算法1. PCA与SVD sklearn中算法都被包括在模块decomposition中,这个模块本质是一个矩阵分解模块。在过去的十年中,如果要讨论算法进步的先锋,矩阵分解可以说是独树一帜。矩阵分解可以用在,深度学习,聚类分析,数据预处理,低纬度特征学习,推荐系统,大数据分析等领域。在2006年,Netflix曾经举办了一个奖金为100万美元的推荐系统算
转载 2024-01-08 14:23:47
59阅读
## Python中的矩阵 在使用Python进行数据处理和分析时,经常会遇到需要将高矩阵的情况。矩阵可以帮助我们减少数据的复杂度,提取出最相关的特征,从而更好地进行数据分析和机器学习。本文将介绍Python矩阵的方法以及代码示例。 ### 矩阵的方法 在Python中,可以使用主成分分析(PCA)和奇异值分解(SVD)等方法对矩阵进行。主成分分析是一种常用的线性
原创 2024-04-28 05:11:34
59阅读
# Python Numpy 矩阵 在数据分析和机器学习领域,矩阵是一种常见的技术,用于减少数据的复杂性和提高计算效率。在 Python 中,我们通常使用 NumPy 库来处理矩阵和数组。本文将介绍如何使用 NumPy 进行矩阵,并提供一些代码示例。 ## 矩阵简介 矩阵通常指的是将一个高矩阵转换为一个低矩阵,同时尽可能保留原始数据的结构和特征。这可以通过多种方法实现
原创 2024-07-25 03:41:26
154阅读
# 如何在Python中实现三稀疏矩阵稀疏矩阵是一种用于存储大规模数据的高效方式。在大多数情况下,数据包含很多零值,因此我们需要找到一种只存储非零元素的方法。本文将指导你如何在Python中实现三稀疏矩阵。 ## 整体流程 以下是实现三稀疏矩阵的步骤: | 步骤 | 描述 | |------|--------------
原创 2024-09-05 05:57:28
119阅读
分布式算法设计1).MapReduce 在Map和Reduce两个基本算子抽象下,所谓Hadoop和Spark分布式计算框架并没有本质上的区别,仅仅是实现上的差异。阅读了不少分布式算法的实现(仅仅是实现,不涉及原理推导),大部分思路比较直观,大不了几个阶段的MapReduce就可以实现。这里主要介绍一个曾经困扰我好久且终于柳暗花明的问题,即“大规模稀疏矩阵乘法”。
前言 为什么要进行数据?直观地好处是维度降低了,便于计算和可视化,其深层次的意义在于有效信息的提取综合及无用信息的摈弃,并且数据保留了原始数据的信息,我们就可以用的数据进行机器学习模型的训练和预测,但将有效提高训练和预测的时间与效率。方法分为线性和非线性,非线性又分为基于核函数和基于特征值的方法(流形学习),代表算法有线性方法:PCA  ICA LDA &
# Java矩阵的初探 在数据科学和机器学习中,是一种非常重要的技术,尤其是在处理高数据时。矩阵可以帮助我们简化数据结构,减少存储空间,改善算法性能等。本文将介绍什么是矩阵,并结合Java代码示例为大家展示如何在Java中实现这一过程。 ## 什么是矩阵矩阵是将高数据映射到低维空间的过程。不同行业的需求决定了技术有多种形式,如主成分分析(PCA)、线性判别
原创 2024-09-17 05:23:48
22阅读
# 使用 Python 对点矩阵进行 在数据科学和机器学习领域,是一个重要的技术,可以帮助我们简化数据,同时保留重要的信息。本文将探讨如何使用 Python 对点矩阵进行,并给出代码示例,帮助大家理解这一过程。我们还将通过序列图和状态图来进一步说明的步骤和状态变化。 ## 什么是是将高数据映射到低维空间的过程。对于高数据,进行后可以降低数据的复杂性、减少计
原创 2024-08-28 08:23:08
56阅读
# Python多维矩阵方案 在许多数据分析和机器学习项目中,我们常常会处理高数据。虽然高数据富有信息,但计算的复杂性会显著提高,可能导致模型的过拟合。为此,技术显得尤为重要。本文将探讨如何利用Python对多维矩阵进行,给出项目方案并附上代码示例。 ## 1. 项目背景 随着大数据时代的到来,数据信息的高性在一定程度上增加了数据处理的难度。在图像处理、文本分析、基因数据等
原创 2024-10-27 06:38:17
47阅读
在处理稀疏矩阵乘以稀疏矩阵的问题时,尤其在 Python 环境中,我们需要利用高效的存储和计算方式,以避免不必要的资源浪费。本文将详细记录解决“Python 稀疏矩阵稀疏矩阵”问题的过程,包括环境准备、集成步骤、配置详解、实战应用、性能优化和生态扩展。 ### 环境准备 确保您有合适的环境来运行 Python 代码。推荐使用 Python 3.6 及以上版本,并安装 `scipy` 和 `n
原创 5月前
33阅读
Python稀疏矩阵1. 导入模块2. SciPy中的稀疏矩阵2.1 坐标列表格式 COO2.2 格式转换2.3 压缩列格式和压缩行格式 CSR/CSC3. 创建稀疏矩阵3.1 稀疏矩阵的可视化3.2 稀疏矩阵线性代数3.3 线性方程组3.4 LU分解3.5 特征值问题 数组和矩阵是数值计算的基础元素。目前为止,我们都是使用NumPy的ndarray数据结构来表示数组,这是一种同构的容器,用于存
第三章.Transformation变换(二与三)1.为什么要学习变换?2.变换的几种形式1.缩放2.相对于y轴翻转3.Shear Matrix 切片4.旋转3.齐次坐标1.平移变换2.齐次坐标的引入3.使用齐次坐标表示上述变换4.组合变换5.分解变换6.三空间中的变换1.三空间中的点和向量2.三空间中的齐次坐标 1.为什么要学习变换?1.很多动画都是由各种各样的变化合成在一块的2.摄
直接上代码:#!/usr/bin/env python # -*- coding:utf-8 -*- # 序列转为稀疏矩阵 # 输入:序列 # 输出:indices非零坐标点,values数据值,shape稀疏矩阵大小 import numpy as np def sparse_tuple_from(sequences, dtype=np.int32): indices = []
转载 2023-06-02 23:19:25
276阅读
【Matlab】方法_基于稀疏PCA的Sparse Coding1.基本思想2.数据集介绍3.文件结构4.详细代码及注释4.1 Main.m4.2 spca.m5.运行结果 1.基本思想稀疏主成分分析(Sparse PCA)是主成分分析的一种扩展形式,旨在寻找数据中最具有变化性或不规则性的结构。稀疏主成分分析通过将原始数据线性投影到一个高维空间中,寻找最稀疏的主成分来进行数据。具体而
以下是使用NumPy / SciPy进行密集和稀疏M矩阵的方法:import numpy as np import scipy.sparse as sp # Coordinates where S is True S = np.array([[0, 1], [3, 6], [3, 4], [9, 1], [4, 7]]) # Dense M matrix # Random big matrix M
默认使用csr格式的稀疏矩阵1、如果要统计稀疏矩阵全部元素的和,不要用sum(a),用np.sum(a)或则a.sum()就好。对于shape=10000*10000的矩阵而言,全部求和采用np.sum比sum高效得多:number = np.sum(sum(xtest_mask),axis=1)[0,0]   2.2秒number = np.sum(xtest_mask) &
title: 稀疏矩阵乘法 date: 2020-11-09 19:31:44 tags: 稀疏矩阵运算 categories: 数据结构 在本算法中,两个稀疏矩阵的特性都有用到 规定规定以下变量名称,本文讲述 矩阵A × 矩阵B = 矩阵C 的运算过程需要用到的存储结构有:矩阵A,矩阵 B 的原始二数组(2个)矩阵A,矩阵B 的三元组数组(2个)存储 矩阵A,矩阵B 每行有多少个非零
代码:#include<stdio.h> #include<stdlib.h> #define MAXSIZE 1000 typedef struct{ int row;//第几行 int col;//第几列 int e;//存储的值 }Triple; typedef struct { Triple data[MAXSIZE]; int m,n,len;
  • 1
  • 2
  • 3
  • 4
  • 5