Overview  统计建模方法是用来modeling随机过程行为的。在构造模型时,通常供我们使用的是随机过程的采样,也就是训练数据。这些样本所具有的知识(较少),事实上,不能完整地反映整个随机过程的状态。建模的目的,就是将这些不完整的知识转化成简洁但准确的模型。我们可以用这个模型去预测随机过程未来的行为。 在统计建模这个领域,指数模型被证明是非常好用的。因此,自世纪之交以来,它成为每个
文章目录最大模型最大原理最大模型的定义前言背景分析结论 最大模型最大原理最大原理也可以表述为满足约束条件的模型集合中选取最大的模型。 如下解释:         假设离散随机变量 X 的概率分布是 ,则其是 ,满足下列不等式:最大模型的定义前言     &
一、最大谱估计估计思想:采用最大原则,外推自相关函数方法估计信号功率谱。它基于将已知的有限长度自相关序列以外的数据用外推的方法求得,而不是把它们当作是零。已知{R(0),R(1),......,R(p)},求得R(p+1),R(p+2),......保证外推后自相关矩阵正定,自相关序列所对应的时间序列应具有最大,在具有已知的p+1个自相关取样值的所有时间序列中,该时间序列是最随机,最不可预测
非线性规划中的对偶问题 拉格朗日函数: 于是: 因此,为了尽量大,p的选取必须保证 考虑: 只要令lambda(i)=负无穷大就行了 对偶问题与拉格朗日函数: 同时: 等价于: 而 可以证明,这里等号成立。不过证明比较复杂,是单独一篇论文了(见参考资料4) 对偶问题与拉格朗日函数: 至此,我们可以通过找min lambda L(p*,lambda)来找出合适的lambda了,这可以用各种近似方法(
最大模型相关的基础知识[概率论:基本概念CDF、PDF ][信息论:与互信息 ][最优化方法:拉格朗日乘数 ][参数估计:贝叶斯思想和贝叶斯参数估计 ][参数估计:最大似然估计MLE ]最大模型The Maximum Entropy最大原理是在1957 年由E.T.Jaynes 提出的,其主要思想是,在只掌握关于未知分布的部分知识时,应该选取符合这些知识但最大的概率分布。因为在这种情
@ 图像阈值分割(最大方法)老规矩,看相关函数(哈哈,没有啥函数)步骤1.进行归一化直方图2.累加概率直方图3.求出各个灰度级的4.计算最大时的阈值计算公式 1.normHist为归一化的直方图,这里不做介绍 2.累加概率直方图 3.求出各个灰度级的4.计算最大时的阈值计算:f(t)=f1(t)+f2(t)最大化的t值,该值即为得到的阈值,即thresh=argmax(f(t))上代码#
图像分割最大(Maximum Entropy Method for Image Segmentation)是一种基于信息论的分割技术,广泛应用于图像处理领域。本文将详细记录如何使用Python实现这一方,涵盖环境配置、编译过程、参数调优、定制开发、性能对比和安全加固的各个方面。 ### 环境配置 在开始之前,我们需要配置Python开发环境并安装所需的库。以下是环境配置的思维导图,展示了
原创 6月前
23阅读
上一篇文章中详细介绍最大模型,这里我们讲一下其求解 最大模型的求解可以形式化为约束最优化问题: 约束 改为求解最小值问题: 使用拉格朗日乘子来解决这个问题,引入拉格朗日乘子,定义拉格朗日函数为:带入上一篇文章和有: 最优化的原始问题是: 为甚么这个优化问题要先求max再求min,因为条件中有和,若不满足这两个条件那么可能趋于无穷大或无穷小。或者可以这样理解,我们最终是要求最小值,而这个最小值
最大进行图像分割是图像处理领域的一个重要技术,特别适用于处理模糊和复杂背景的图像。本文将详细记录使用Python实现最大进行图像分割的过程,涵盖版本对比、迁移指南、兼容性处理、实战案例、排错指南和生态扩展。 ### 版本对比 版本演进史如图所示: ```mermaid timeline title 最大图像分割版本演进 2020-01-01 : v1.0 发布
原创 6月前
22阅读
前面已经写了四篇博文介绍图像的阈值化技术了从四篇博文中我们可以看出,图像的阈值化技术的关键在于找寻合适的阈值然后用这个阈值对图像进行二值化处理。找寻阈值的方法有很多,上面三篇博文就提供了四种方法。本文介绍利用图像图像直方图的最大找寻阈值的方法,并附相关代码。先介绍原理:1、要理解最大就不得不先了解的概念。的概念用于表示系统的不确定性,系统的越大则系统的不确定性越大。所以取系统的最大就是
根据 使用最大似然来求解线性模型(2)-为什么是最大化似然函数? 中提到,某个随机变量tn的 条件概率 服从均值为wT*xn,方差为σ2的正态分布。 现在假设有N个样本点,它们的联合概率密度为: 由于在给定了w和σ2的条件下,tn之间是相互独立的。即:在给定的 w,σ2的条件下,t1 t2 ...tn 之间是相互独立的(这就是朴素贝叶斯假设!)故
最大原理是在1957 年由E.T.Jaynes 提出的,其主要思想是,在只掌握关于未知分布的部分知识时,应该选取符合这些知识但最大的概率分布。因为在这种情况下,符合已知知识的概率分布可能不止一个。我们知道,定义的实际上是一个随机变量的不确定性,最大的时候,说明随机变量最不确定,换句话说,也就是随机变量最随机,对其行为做准确预测最困难。 从这个意义上讲,那么最大原理的...
原创 2023-11-07 11:26:25
73阅读
什么是最大(entropy)指的是体系的混乱的程度,它在控制论、概率论、数论、天体物理、生命科学等领域都有重要应用,在不同的学科中也有引申出的更为具体的 定义,是各领域十分重要的参量。由鲁道夫·克劳修斯(Rudolf Clausius)提出,并应用在热力学中。后来在,克劳德·艾尔伍德·香农(Claude Elwood Shannon)第一次将的概念引入到信息论中来。在信息论中,表示的是不
转载 2024-01-25 23:41:44
52阅读
本文参考nltk MaxentClassifier实现了一个简单的最大模型,主要用于理解最大模型中一些数学公式的实际含义。 最大模型: Pw(y|x)Zw(x)=1Zw(x)exp(∑i=1nwifi(x,y))=∑yexp(∑i=1nwifi(x,y)) 这里 fi(x,y)代表特征函数, wi代表每个特征函数对于的权值。 如何计算测试数据x被分为类别y的概率呢? 总结成一句话
目录一、概念二、基于python的2.1步骤 mapminmax介绍2.2例题 整体代码三、基于MATLAB的3.1例题2.2 某点最优型指标处理整体代码 一、概念1.1相关概念是一种客观赋值方法。在具体使用的过程中,根据各指标的变异程度,利用信息计算出各指标的权,再通过权对各指标的权重进行修正,从而得到较为客观的指标权重。一般
计算核心指标权重是一种常见的分析方法,常见的计算权重的方法的原理及使用条件可参考https://baijiahao.baidu.com/s?id=1661019965038118642&wfr=spider&for=pc。在实际工作中,需要结合数据的特征情况选择权重计算方法。我在B端项目分析中更多考虑的是数据所携带的信息量,故选择了。本次权重计算的不同之处在于,项目具有较强的
转载 2023-07-20 10:15:23
279阅读
综合评价分析流程一、案例背景当前有一份数据,是各品牌车各个维度的得分情况,现在想要使用进行综合评价,得到各品牌车的综合得分,从而进行车型优劣对比,为消费者提供购车依据。数据如下(数据虚构,无实际意义):二、数据处理使用进行分析,需要对数据进行处理,包括数据方向处理和数据量纲处理。(1)方向处理当数据方向不一致时,需要进行方向处理,消除数据方向不同的影响。数据按照方向不同,可分为正
转载 2023-08-07 22:00:57
622阅读
  一、分析前准备1.研究背景TOPSIS用于研究评价对象与‘理想解’的距离情况,结合‘理想解’(正理想解和负理想解),计算得到最终接近程度C值。权TOPSIS核心在于TOPSIS,但在计算数据时,首先会利用值()计算得到各评价指标的权重,并且将评价指标数据与权重相乘,得到新的数据,利用新数据进行TOPSIS研究。通俗地讲,权TOPSIS是先使用得到新
转载 2023-09-08 22:38:13
219阅读
数学建模之(SPSSPRO与MATLAB)一、基本原理信息值越小,指标的离散程度越大(表明指标值得变异程度越大,提供的信息量越多),该指标对综合评价的影响(即 权重)就 越大,如果某项指标的值全部相等,则该指标在综合评价中不起作用。因此,可 利用信息这个工具,计算出各个指标的权重,为多指标综合评价提供依据。指标的值变化会直接影响因素的变化,变化量越大,说明指标对于
背景在进行一些综合评估类项目时,需要给一些指标确定一个合理的权重,用来计算综合得分,这种综合评估类项目在实际的业务中有很多应用,比如:学生奖学金评定方法、广告效果综合评估、电视节目满意度综合评估、用户满意度综合评估等。计算权重的方法比较多,下面主要介绍利用来确定确定。一些名词解释个案 一个个案,一条记录,也就是一个样本,在矩阵里面就是一行数据,不同地方叫法不一样属性 属性就是样本所拥有的特性
转载 2023-08-10 11:39:12
323阅读
  • 1
  • 2
  • 3
  • 4
  • 5