最大熵模型相关的基础知识[概率论:基本概念CDF、PDF ][信息论:熵与互信息 ][最优化方法:拉格朗日乘数法 ][参数估计:贝叶斯思想和贝叶斯参数估计 ][参数估计:最大似然估计MLE ]最大熵模型The Maximum Entropy最大熵原理是在1957 年由E.T.Jaynes 提出的,其主要思想是,在只掌握关于未知分布的部分知识时,应该选取符合这些知识但熵值最大的概率分布。因为在这种情
上一篇文章中详细介绍最大熵模型,这里我们讲一下其求解 最大熵模型的求解可以形式化为约束最优化问题: 约束 改为求解最小值问题: 使用拉格朗日乘子法来解决这个问题,引入拉格朗日乘子,定义拉格朗日函数为:带入上一篇文章和有: 最优化的原始问题是: 为甚么这个优化问题要先求max再求min,因为条件中有和,若不满足这两个条件那么可能趋于无穷大或无穷小。或者可以这样理解,我们最终是要求最小值,而这个最小值
大多数分割算法都基于图像灰度值的两个基本性质之一:不连续性和相似性。第一类方法根据灰度的突变将图像分割为多个区域;第二类方法根据一组预定义的准则将图像分割为多个区域。阈值处理、区域生长、区域分离和聚合都是这类方法的例子。结合不同类别的分割方法。如边缘检测与阈值处理,可以提高分割性能。 首先是阈值处理方法。由于图像阈值处理直观、实现简单并且计算速度快,因此在图像分割应用中处于核
转载
2024-08-12 13:58:19
177阅读
信息论里,熵是可以度量随机变量的不确定性的,已经证明的:当随机变量呈均匀分布的时候,熵值最大,一个有序的系统有着较小的熵值,无序系统的熵值则较大。机器学习里面,最大熵原理假设:描述一个概率分布的时候,在满足所有约束条件的情况下,熵值最大的模型是最好的。我们假设:对于离散随机变量x,假设x有M哥取值,记,那么他的熵就被定义为:对于连续变量x,假设他的概率密度函数是,那么,他的熵就是:首先,看最大熵模
转载
2023-11-02 10:39:59
93阅读
6.4决策树决策树是一个简单的为输入值选择标签的流程图。这个流程图由检查特征值的决策节点 和分配标签的叶节点组成。为输入值选择标签,我们以流程图的初始决策节点(称为其根节点)开始。 熵和信息增益在决策树桩确定上的应用(可以自行查找相关资料阅读)可以参考:决策树的一些缺点:1、可能会导致过拟合。由于决策树的每个分支会划分训练数据,在 训练树的低节点,可用的训练数据量可能会变得非常小。因此,
# 使用最大熵阀值实现图像分割
图像分割是计算机视觉中一个非常重要的任务,最大熵阀值分割是一种有效的实现方法。本文将指导你如何在Python中实现这一过程。我们将首先概述整个流程,然后逐步深入每个步骤,提供所需的代码和解释。
## 任务流程概述
以下是整个任务的流程图:
```mermaid
journey
title 最大熵阀值分割过程
section 数据准备
非线性规划中的对偶问题 拉格朗日函数: 于是: 因此,为了尽量大,p的选取必须保证 考虑: 只要令lambda(i)=负无穷大就行了 对偶问题与拉格朗日函数: 同时: 等价于: 而 可以证明,这里等号成立。不过证明比较复杂,是单独一篇论文了(见参考资料4) 对偶问题与拉格朗日函数: 至此,我们可以通过找min lambda L(p*,lambda)来找出合适的lambda了,这可以用各种近似方法(
转载
2024-01-05 16:35:57
50阅读
目 录摘 要I1 原理与实现11.1图像分割的概述11.2 阈值分割的基本原理21.3 阈值分割方法的分类32 程序设计42.1 主程序42.2 OTSU52.3 全局阈值62.4 迭代法63结果与分析84 心得体会10参考文献11摘 要数字图像处理的目的之一是图像识别, 而图像分割是图像识别工作的基础。图像分割是指把图像分解成具有特性的区域并提取出感兴趣目标的技术和过程,是计算机视觉领域的一个重
转载
2023-11-22 19:03:12
42阅读
@ 图像阈值分割(最大熵方法)老规矩,看相关函数(哈哈,没有啥函数)步骤1.进行归一化直方图2.累加概率直方图3.求出各个灰度级的熵4.计算最大熵时的阈值计算公式 1.normHist为归一化的直方图,这里不做介绍 2.累加概率直方图 3.求出各个灰度级的熵4.计算最大熵时的阈值计算:f(t)=f1(t)+f2(t)最大化的t值,该值即为得到的阈值,即thresh=argmax(f(t))上代码#
转载
2023-06-21 09:47:49
173阅读
图像分割最大熵法(Maximum Entropy Method for Image Segmentation)是一种基于信息论的分割技术,广泛应用于图像处理领域。本文将详细记录如何使用Python实现这一方法,涵盖环境配置、编译过程、参数调优、定制开发、性能对比和安全加固的各个方面。
### 环境配置
在开始之前,我们需要配置Python开发环境并安装所需的库。以下是环境配置的思维导图,展示了
# 投影分割法 Python 实现
## 1. 流程概述
投影分割法是一种字符识别的基本方法之一,其主要思想是通过字符的投影信息来实现字符的分割。在Python中,我们可以通过一系列的图像处理和分析技术来实现这一方法。
下面是整个投影分割法的流程概述:
| 步骤 | 描述 |
| --- | --- |
| 1 | 导入必要的库和模块 |
| 2 | 读取图像并进行预处理 |
| 3 |
原创
2023-09-11 13:00:01
168阅读
1 Box-Cox变换在回归模型号中,Box-Cox变换是对因变量Y作如下变换: (1.1) 这里是一个待定变换参数。对不同的,所做的变换自然就不同,所以是一个变换族。它包括了对数变换(=0),平方根变换()和倒数变换(=-1)等常用变换。 图1. 变换前变量的分布 图2.变换后变量分布 对因变量的n个观测值,应用上述变换,得到变换后的向量 (1.2
转载
2024-01-15 13:51:14
130阅读
中间或插值得到,二十位于黄金分割点附近,即mid = low
原创
2023-01-31 14:49:51
298阅读
Overview 统计建模方法是用来modeling随机过程行为的。在构造模型时,通常供我们使用的是随机过程的采样,也就是训练数据。这些样本所具有的知识(较少),事实上,不能完整地反映整个随机过程的状态。建模的目的,就是将这些不完整的知识转化成简洁但准确的模型。我们可以用这个模型去预测随机过程未来的行为。 在统计建模这个领域,指数模型被证明是非常好用的。因此,自世纪之交以来,它成为每个
在图像处理领域,阈值分割是一种常见的技术,能够将图像分为不同的区域。最大熵阈值分割是一种基于信息论的方法,通过最大化图像的熵来确定最优阈值。以下是关于“python实现最大熵阈值分割代码”的整理和记录。
### 1. 背景描述
在近二十年的图像处理研究和实际应用中,阈值分割技术发展迅速。最大的优势在于其操作简单,处理快速。最大熵阈值分割作为一种有效的自动阈值选择方法,越来越受到关注。以下是该算
最大熵法进行图像分割是图像处理领域的一个重要技术,特别适用于处理模糊和复杂背景的图像。本文将详细记录使用Python实现最大熵法进行图像分割的过程,涵盖版本对比、迁移指南、兼容性处理、实战案例、排错指南和生态扩展。
### 版本对比
版本演进史如图所示:
```mermaid
timeline
title 最大熵法图像分割版本演进
2020-01-01 : v1.0 发布
RGB颜色空间的的理解
三基色原理:
大多数的颜色可以通过红、绿、蓝三色按照不同的比例合成产生,同样绝大多数单色光也可以分解成红绿蓝三种色
光,红绿蓝三基色按照不同的比例相加合成混色称为相加混色。其中一些混色的规律有:
红色+绿色=黄色;绿色+蓝色=青色;红色+蓝色=品红;红色+绿色+蓝色=白色;
RGB颜色空间:
(1)、并不是说R值越大,颜色越红
转载
2024-01-09 06:49:26
182阅读
前面已经写了四篇博文介绍图像的阈值化技术了从四篇博文中我们可以看出,图像的阈值化技术的关键在于找寻合适的阈值然后用这个阈值对图像进行二值化处理。找寻阈值的方法有很多,上面三篇博文就提供了四种方法。本文介绍利用图像图像直方图的最大熵找寻阈值的方法,并附相关代码。先介绍原理:1、要理解最大熵就不得不先了解熵的概念。熵的概念用于表示系统的不确定性,系统的熵越大则系统的不确定性越大。所以取系统的最大熵就是
转载
2024-05-10 07:26:03
73阅读
关于css3的背景切割(background-clip)、背景原点(background-origin)、background-size、透明背景的使用、渐变背景
一、背景切割 background-clip :border-box | padding-box | content-box 作用:为将背景图片做适当的裁剪,以适应需要。&
# 投影分割法的Python实现
投影分割法是一种图像分割技术,广泛应用于图像处理、计算机视觉等领域。它的基本思想是通过观察图像的投影,对图像进行分割,以达到提取感兴趣区域的目的。在这篇文章中,我们将探讨投影分割法的基本原理,并通过Python代码示例来实现这一技术。此外,我们还将运用Mermaid语法展示相应的甘特图和饼状图。
## 投影分割法的基本原理
投影分割法的核心思想是对图像的某个
原创
2024-09-30 05:24:00
92阅读