对于线性不可分的样本空间,可以将样本从原始空间映射到另一个高维特征空间,从而使样本在这个特征空间内线性可分。由于特征空间的维数可能很高,难以计算,所以通过引入核函数,可以将高维特征空间中的内积(dot product)转化为低维特征空间中的通过核函数计算的结果。常用核函数2:为了减少过拟合,引入软间隔(soft margin)概念,允许支持向量机在一些样本上出错:ξi表示训练样本距离对应的正确决策
一、开发工具简介1、opencv分类器基于图像HAAR与LBP特征训练的级联分类器,只需要简单的正负样本数据集图片,就可以训练一个检测正样本的级联分类器。最重要的是,经过编译好的的exe类文件训练出来的分类器,在C++,Python,Js几种语言环境中都可以调用。训练方法很简单,跟着教程按部就班即可。网上也有很多教程,具体方法如下:训练方法1、获取opencv_createsamples.exe和
转载
2024-05-30 17:19:16
69阅读
目标在本教程中,我们将学习Haar级联对象检测的工作原理。我们将使用基于Haar Feature的Cascade分类器了解人脸检测和眼睛检测的基础知识。我们将使用cv::CascadeClassifier类来检测视频流中的对象。特别是,我们将使用以下函数: cv::CascadeClassifier::load来加载.xml分类器文件。它可以是Haar或LBP分类器 cv::CascadeClas
转载
2024-06-11 13:44:19
85阅读
一、SVM介绍分类器分类器是一种计算机程序。他的设计目标是在通过学习后,可自动将数据分到已知类别。 平面线性分类器一个简单的分类问题,如图有一些圆圈和一些正方形,如何找一条最优的直线将他们分开?我们可以找到很多种方法画出这条直线,但怎样的直线才是最优的呢?距离样本太近的直线不是最优的,因为这样的直线对噪声敏感度高,泛化性较差。 因此我们的目标是找到一条直线,离最近的点距离最远。怎么寻找距
文章导航1.收集正样本2.处理正样本3.收集负样本4.生成描述文件5.训练分类器 1.收集正样本这里需要注意的是,正样本图需要裁剪,使目标物体轮廓很清晰,且正样本图越多越好。2.处理正样本将正样本图片转为灰度图,方便后续处理。def convert_gray(f, **args): # 图片处理与格式化的函数
rgb = io.imread(f) # 读取图片
gray =
转载
2024-03-03 10:11:20
157阅读
先把我印象笔记里的东西贴出来,后期有时间再细细整理。分类器的工作原理: 一个分类器经过大量的正例和反例训练。训练后,可以应用到与训练过程中大小相同的感兴趣区域中使用。检测过程中,产生一个搜索框在图片移动,经过每个位置并用分类器检测。搜索框的尺寸会在每一遍检索完后改变。级联分类器现在有两种选择: 一是使用 opencv1 的CvHaarClassifierCascade函数,二是使用新版本的Ca
转载
2024-05-18 16:02:36
55阅读
1 #include <opencv2/opencv.hpp> 2 #include <iostream> 3 4 using namespace cv; 5 using namespace std; 6 7 int main(int argc, char** argv) { 8 String cascadeFilePath = "F:/CMake_bulid/
转载
2018-10-03 17:27:00
71阅读
,需要说明的是,OpenCV自带的haar training提取的特征是haar特征(具体请参考我的另一篇关于haar
转载
2023-01-05 12:08:00
176阅读
在本文中我将利用 opencv 3.0 自带级联分类器将图片集训练得出训练好的分类器,通过程序调用的方法调用训练好的分类器进而检测行人。首先应找到级联分类器的位置所在,其位置一般应在opencv安装的根目录中,选中我划出的两个程序复制到训练集文件夹中。两者的作用分别是:opencv_createsamples用于准备训练用的正样本数据和测试数据,能够生成能被opencv_traincascade程
转载
2024-03-29 07:30:28
66阅读
一 采集数据并制作正负样本数据集1.1 录制视频 1.2 将单个视频截取为指定分辨率的图像1.3 处理负样本视频1.4 本次训练正负样本数量选择与图片重编号二 利用matlab制作制作正样本标注框文件三 开始训练opencv级联分类器3.1 生成正样本文件pos.txt3.1.1 对label.txt进行处理,3.1.2 生成暂时性的pos.txt即pos_tmp.txt3.1
转载
2024-04-24 13:27:58
84阅读
文章目录前言一、项目结构在这里插入图片描述二、源码1.程序入口2.SVM_Classify类的设计3.Classfication_SVM类的设计总结 前言本文主要使用opencv实现图像分类器一、项目结构二、源码1.程序入口int main(void)
{
//int clusters=1000;
//Classfication_SVM c(clusters);
特征聚类
//c.Tra
转载
2024-03-25 17:39:24
155阅读
文章目录1. 引言2. 基本原理3. 函数解析创建模型设置模型类型设置参数C设置核函数设置迭代算法的终止标准训练SVM模型预测结果误差计算保存SVM模型从文件中加载SVM4. 示例代码官方示例(python)推理阶段(C++版本)5. 小结 1. 引言opencv中集成了基于libsvm1实现的SVM接口,便于直接进行视觉分类任务。对于数据处理和可视化需求来说,可以用python接口opencv
转载
2023-11-15 19:19:41
71阅读
环境:opencv-4.0,python,c++ 方法:opencv_createsamples,opencv_traincascade,haar特征或者lbp特征+cascade分类器 流程: 收集样本,处理样本 训练分类器 目标检测一. 收集样本,处理样本 收集正样本关于正样本的收集
转载
2023-11-18 10:18:07
73阅读
提供一个人脸检测的训练工程,其里面包括原始的训练样本、制作好的训练样本、训练指令等,感觉其样本分类特别麻烦其下载地址为:opencv使用cascade分类器训练人脸检测的样本与相关文件1 、opencv里的分类器大概介绍: OpenCV中有两个程序可以训练级联分类器: opencv_haartraining and opencv_traincascade``。 ``opencv_tra
转载
2024-05-01 14:19:08
31阅读
原理解释KNNK-nearest-neighbors:K最近邻算法。knn通过在特征空间中查找待预测节点的K个邻居,然后根据查找到的K个邻居的标签来决定待分类样本的标签,这样的方法叫做KNN方法,即K-最近邻方法。以下图为例: 图中的绿色点为待预测点,如果K=3,那么在三个邻居中有2个红1个蓝,则绿色待预测点的标签应该是红色;如果K=5,则在5个邻居中,有2个红色,3个蓝色,则标签为蓝色。所以KN
1.准备工作目录准备好如下工作目录OpenCV版本较高(大概4.以上)时可能没有opencv_createsamples和opencv_traincascade的exe文件需要下载cmake自己生成,过程较复杂。这里建议使用低版本,我用的是3.4.16。neg目录: 放负样本的目录pos目录: 放正样本的目录xml目录: 新建的一个目录,为之后存放分类器文件使用neg.txt: 负样本路径列表po
转载
2024-01-10 21:25:35
87阅读
最近想用OpenCV中的CascadeClassifier做一些物体跟踪的工作。就读了一下官网的教程,记录一下。这个网页主要用来介绍如何训练及使用分类器。OpenCV中有两个训练cascade classifier的应用,包括:opencv_haartraining和opencv_traincascade。opencv_traincascade是新的实现,它既支持Haar和LBP特征。(有关这两个
转载
2024-05-29 06:25:09
27阅读
目标检测方法最初由Paul Viola [Viola01]提出,并由Rainer Lienhart [Lienhart02]对这一方法进行了改善. 首先,利用样本(大约几百幅样本图片)的 harr 特征进行分类器训练,得到一个级联的boosted分类器。训练样本分为正例样本和反例样本,其中正例样本是指待检目标样本(例如人脸或汽车等),反例样本指
转载
2023-07-27 20:36:06
77阅读
一、简介 目标检测方法最初由PaulViola提出,并由Rainer Lienhart对这一方法进行了改善。该方法的基本步骤为: 首先,利用样本(大约几百幅样本图片)的harr 特征进行分类器训练,得到一个级联的boosted分类器。分类器中的"级联"是指最终的分类器是由几个简单分类器级联组成。在图像检测中,被检窗口依次通过每一级分类器, 这样在
转载
2023-11-28 22:39:21
92阅读
目标检测方法最初由Paul Viola [Viola01]提出,并由Rainer Lienhart [Lienhart02]对这一方法进行了改善. 首先,利用样本(大约几百幅样本图片)的 harr 特征进行分类器训练,得到一个级联的boosted分类器。训练样本分为正例样本和反例样本,其中正例样本是指
转载
2024-01-02 11:16:18
33阅读