最近想用OpenCV中的CascadeClassifier做一些物体跟踪的工作。就读了一下官网的教程,记录一下。这个网页主要用来介绍如何训练及使用分类OpenCV中有两个训练cascade classifier的应用,包括:opencv_haartraining和opencv_traincascade。opencv_traincascade是新的实现,它既支持Haar和LBP特征。(有关这两个
(一) OpenCV3.1.0+VS2015开发环境配置下载OpenCV安装包(笔者下载3.1.0版本)环境变量配置(opencv安装路径\build\x64\vc14\bin,注意的是x64文件夹下分为vc12和vc14两个文件夹,他们对应于VS的版本,vc8 = Visual Studio 2005,vc9 = Visual Studio 2008,vc10 = Visual Studio 2
目录前言一、目标检测技术二、样本采集工作原理三、创建自己的级联分类Step1:准备好样本图像Step2:环境配置(OpenCV win10)Step3:设置路径Step4:实现样本数据采集 Step5:实现样本数据训练Step6:生成级联分类文件 四、案例实现Step1:灰度处理Step2:二次压缩Step3:直方图均衡化Step4:标定、框选目标?案例完整代码五、总结&n
文章导航1.收集正样本2.处理正样本3.收集负样本4.生成描述文件5.训练分类 1.收集正样本这里需要注意的是,正样本图需要裁剪,使目标物体轮廓很清晰,且正样本图越多越好。2.处理正样本将正样本图片转为灰度图,方便后续处理。def convert_gray(f, **args): # 图片处理与格式化的函数 rgb = io.imread(f) # 读取图片 gray =
转载 2024-03-03 10:11:20
157阅读
这里我用的是OpenCV+python+pycharm。整体脉络:环境配置–收集样本–转化文件–得到.xml文件–使用,在此记录一下。一、环境配置 在python左上角点进这个小扳手就可以安装opencv_python,这里推荐安装4以下版本,原因之后会说。这是目前我知道的最简单的办法,但我估计会有很多不便,不然也不会有这么多人不用这个法子。二、样本收集 安装好后,我们开始收集正样本和负样本,正样
转载 2024-06-03 15:29:47
34阅读
如今,计算机视觉在机器学习和深度学习中风靡一时。该领域最简单的应用是人脸检测。这就是我们将在这里讲解的内容。但是在开始之前,让我们看一下两个实际的用例:1. 使汽车更安全。世界各地的汽车制造商,都越来越关注使汽车更具个性和安全性,以供驾驶员驾驶。在尝试构建更智能的汽车功能时,制造商可以使用AI/ML帮助他们更好地理解人类的情感。使用面部检测智能汽车可以在驾驶员疲劳时向驾驶员发出警报。与驾驶有关的错
环境:opencv-4.0,python,c++ 方法:opencv_createsamples,opencv_traincascade,haar特征或者lbp特征+cascade分类 流程:    收集样本,处理样本     训练分类     目标检测一. 收集样本,处理样本 收集正样本关于正样本的收集
文章目录1. 引言2. 基本原理3. 函数解析创建模型设置模型类型设置参数C设置核函数设置迭代算法的终止标准训练SVM模型预测结果误差计算保存SVM模型从文件中加载SVM4. 示例代码官方示例(python)推理阶段(C++版本)5. 小结 1. 引言opencv中集成了基于libsvm1实现的SVM接口,便于直接进行视觉分类任务。对于数据处理和可视化需求来说,可以用python接口opencv
文章目录前言一、项目结构在这里插入图片描述二、源码1.程序入口2.SVM_Classify类的设计3.Classfication_SVM类的设计总结 前言本文主要使用opencv实现图像分类一、项目结构二、源码1.程序入口int main(void) { //int clusters=1000; //Classfication_SVM c(clusters); 特征聚类 //c.Tra
一 采集数据并制作正负样本数据集1.1 录制视频 1.2 将单个视频截取为指定分辨率的图像1.3 处理负样本视频1.4 本次训练正负样本数量选择与图片重编号二 利用matlab制作制作正样本标注框文件三 开始训练opencv级联分类3.1 生成正样本文件pos.txt3.1.1 对label.txt进行处理,3.1.2 生成暂时性的pos.txt即pos_tmp.txt3.1
提供一个人脸检测的训练工程,其里面包括原始的训练样本、制作好的训练样本、训练指令等,感觉其样本分类特别麻烦其下载地址为:opencv使用cascade分类训练人脸检测的样本与相关文件1 、opencv里的分类大概介绍:  OpenCV中有两个程序可以训练级联分类opencv_haartraining and opencv_traincascade``。 ``opencv_tra
支持向量机:将不同类样本在样本空间进行分割,得出一个间隔最大超平面。调用OpenCV中SVM分类流程如下:1)建立训练样本注意:CvSVM的train函数要求训练样本存储在float类型的Mat结构中,故需将训练数据存储为符合条件的Mat变量中。2)设置SVM分类参数注意:此处主要涉及到SVM分类相关参数设置。下面是自己对SVM分类相关参数总结。 参数介绍 degree:内核函数
1.概述级联分类这个坑早该挖的了,由于本人之前使用的是win10系统家庭版的某种关系,并没有成功训练出xml,趁着换了Linux和比赛需要就再次挖挖坑,这里用到的是Opencv自带的两个分类来训练样本,这里仅讲述linux环境下分类的使用方法。Linux版本两个应用程序位于/usr/local/bin文件夹中,分别为opencv_createsamples和opencv_traincasca
OpenCV训练分类 一、简介     目标检测方法最初由Paul Viola [Viola01]提出,并由Rainer Lienhart [Lienhart02]对这一方法进行了改善。该方法的基本步骤为: 首先,利用样本(大约几百幅样本图片)的 harr 特征进行分类训练,得到一个级联的boosted分类。   &nbsp
转载 2023-11-14 10:39:28
60阅读
一、简介       目标检测方法最初由PaulViola提出,并由Rainer Lienhart对这一方法进行了改善。该方法的基本步骤为: 首先,利用样本(大约几百幅样本图片)的harr 特征进行分类训练,得到一个级联的boosted分类分类中的"级联"是指最终的分类是由几个简单分类级联组成。在图像检测中,被检窗口依次通过每一级分类, 这样在
         目标检测方法最初由Paul Viola [Viola01]提出,并由Rainer Lienhart [Lienhart02]对这一方法进行了改善. 首先,利用样本(大约几百幅样本图片)的 harr 特征进行分类训练,得到一个级联的boosted分类。训练样本分为正例样本和反例样本,其中正例样本是指
检测任务 主要参考了几篇文献博客: https://docs.opencv.org/3.3.1/dc/d88/tutorial_traincascade.html 后来想了下,还是opencv自己的文档最好用,需要耐心读就好。 首先明确级联分类cascadeClassifier的原理。核心是弱分类与强分类的等价性,当多个弱分类级联起来之后,即使每个单独的分类分类效果很差,比如
目标在本教程中,我们将学习Haar级联对象检测的工作原理。我们将使用基于Haar Feature的Cascade分类了解人脸检测和眼睛检测的基础知识。我们将使用cv::CascadeClassifier类来检测视频流中的对象。特别是,我们将使用以下函数: cv::CascadeClassifier::load来加载.xml分类文件。它可以是Haar或LBP分类 cv::CascadeClas
       目标检测方法最初由Paul Viola [Viola01]提出,并由Rainer Lienhart [Lienhart02]对这一方法进行了改善. 首先,利用样本(大约几百幅样本图片)的 harr 特征进行分类训练,得到一个级联的boosted分类。训练样本分为正例样本和反例样本,其中正例样本是指待检目标样本(例如人脸或汽车等),反例样本指
机器学习在数据挖掘、计算机视觉、搜索引擎、医学诊断、证券市场分析、语言与手写识别等领域有着十分广泛的应用,特别是在数据分析挥着越来越重要的作用。在机器学习中,决策树是最基础且应用最广泛的归纳推理算法之一,基于决策树算法,衍生出很多出色的集成算法,如random forest、adaboost、gradient tree boostiong等。决策树构建的基本步骤如下:1.开始,所有记录看作一个节点
  • 1
  • 2
  • 3
  • 4
  • 5