1. CamShift思想 Camshift全称是"Continuously Adaptive Mean-SHIFT",即连续自适应的MeanShift算法,是MeanShift算法的改进。CamShift的基本思想是视频图像的所有帧作MeanShift运算,并
转载
2024-05-09 16:11:21
504阅读
python实现手势识别(入门)使用open-cv实现简单的手势识别。刚刚接触python不久,看到了很多有意思的项目,尤其时关于计算机视觉的。网上搜到了一些关于手势处理的实验,我在这儿简单的实现一下(PS:和那些大佬比起来真的是差远了,毕竟刚接触不久),主要运用的知识就是opencv,python基本语法,图像处理基础知识。最终实现结果: 手势识别python实现手势识别(入门)获取视频(摄像头
转载
2024-04-01 10:06:18
102阅读
opencv yyds 代码链接给一下添加链接描述 使用了OpenCV内置的多目标跟踪器,可以选择不同的跟踪算法进行目标追踪。以下是代码的主要流程和理论总结:导入所需的库和模块,包括argparse、time、cv2(OpenCV)和numpy。使用argparse设置命令行参数,其中–video用于指定要跟踪的视频路径,–tracker用于选择要使用的跟踪算法,默认为"csrt"。定义了一系列O
转载
2024-02-14 12:44:46
118阅读
基于OpenCV+MediaPipe的手势识别(数字、石头剪刀布等手势识别) 文章目录手势识别检测原理左右手判断获取各个手指监测点的坐标代码附录:列表的赋值类型和py打包列表赋值BUG复现代码改进优化总结py打包 手势识别可识别左右手,共定义了15种手势,可以自行增加 通过MediaPipe识别关键点 而后通过计算每根手指的角度来进行手势识别 手势定义按经验来的 通过手指角度来判断是否弯曲或伸直
转载
2024-02-29 07:04:26
210阅读
前言降噪。Open CV 提供了 5 种不同的平滑方法:简单模糊,简单无缩放变换的模糊,中值模糊,高斯模糊和双边滤波,它们都通过函数 cvSmooth 实现。 关于几种平滑的具体实现步骤及相关基础知识,本文不做讲解( 网上很多相关资料 ),仅就调用封装好了的平滑函数进行介绍,且仅具体介绍简单平滑处理,其它的平滑方式类似。平滑函数 cvSmooth() 函数原型: 1 void cvSmoot
基于opencv和kreas的手势(手语)识别代码为实验需要,具体使用需要修改tensorflow教程(推荐看这个) 内容一:裁剪视频,获取手势import cv2
import numpy as np
import os
import shutil
# 皮肤检测
def pi(res):
y_cr_cb = cv2.cvtColor(res, cv2.COLOR_BGR2YCR_CB
转载
2024-04-30 14:01:54
76阅读
KCF: Kernelized correlation filterKCF是一种鉴别式追踪方法,这类方法一般都是在追踪过程中训练一个目标检测器,使用目标检测器去检测下一帧预测位置是否是目标,然后再使用新检测结果去更新训练集进而更新目标检测器。而在训练目标检测器时一般选取目标区域为正样本,目标的周围区域为负样本,当然越靠近目标的区域为正样本的可能性越大。论文:High-Speed Tracking
转载
2024-04-29 22:03:59
284阅读
实验环境:vs2008+opencv1.0+xp虚拟机。搭建环境:1.下载安装最新的OpenCV版本,我使用的是OpenCV_1.0.exe. 2.按照默认选项安装OpenCV,在安装过程中,选择需要修改系统环境变量。 3.打开电脑属性->高级->环境变量,在系统变量path里加上bin的路径(D:\Program Files\OpenCV\bin)。(此处Open
转载
2024-03-24 08:47:55
148阅读
目录系统介绍OpenCVMediapipeTensorFlowPyWin32数据处理通过mediapipe提取特征转化为相对坐标:均值方差归一化(标准化):测试效果:神经网络网络结构设计激活函数神经网络的训练过程模型调参语音唤醒监听麦克风将音频读取为numpy识别判断系统设计识别缓冲区键鼠控制PyWin32识别区域的映射鼠标操作键盘操作手势控制计算旋转角度调节亮度和音量 系统介绍本系统灵
转载
2024-07-06 13:40:28
146阅读
基于OpenCV的简易实时手势识别1.基本信息介绍1.1实验步骤1.2效果展示2.肤色检测+二值化+开运算+高斯模糊2.1 flip()函数原型2.2cvtColor()函数原型2.3split()函数原型2.4GaussianBlur()函数原型2.5Code3.连通空心部分+腐蚀3.1 floodFill()函数原型3.2 morphologyEx()函数原型3.3Code4.多边形拟合曲线
转载
2023-10-10 22:52:10
325阅读
最近一个项目是在做手势的识别,使用传统的图像匹配方法误差率太大,还是得上深度学习。以前我听信网上很多人的言论,认为深度学习只是概率统计的一个衍生,本身的理论水平有限,只能作为调参侠来使用神经网络,或者利用一些Trick或者技巧来实验性地改造神经网络,没有理论的支持。因此我认为深度学习只是昙花一现的事务,如今中国大兴的人工智能浪潮有点太过。但做了这么多项目以来,我越来越感觉到机器学习的强大,越来越懂
转载
2024-02-21 14:17:27
243阅读
OpenCV+Python3.5 简易手势识别OpenCV+Python3.5 简易手势识别任务OpenCV用摄像头捕获视频肤色识别——椭圆肤色检测模型去噪——滤波、腐蚀和膨胀Canny边缘检测识别——轮廓匹配 OpenCV+Python3.5 简易手势识别任务检测剪刀石头布三种手势,通过摄像头输入,方法如下:选用合适颜色空间及阈值提取皮肤部分使用滤波腐蚀膨胀等方法去噪边缘检测寻用合适方法分类O
转载
2023-10-10 09:30:06
179阅读
临近毕业,找工作压力大,由于实验室的规定,研究生三年没有实习、没有大型项目经验。为了能在简历上增点彩,就准备自己搞点小东西,希望可以找到一个称心的工作。第一个小demo是基于opencv和tensorflow的手势识别。手势识别无论是在学术界还是工业界都已经很完美了,我这里也是从最简单的开始,一步一步来,防止自己自信心被打击。基本计划是: (1) 利用opencv录制需要的手势 (2)tens
转载
2023-11-27 20:27:09
235阅读
对于刚入门的OpenCV玩家,提起目标跟踪,马上想起的就是camshift,但是camshift跟踪往往达不到我们的跟踪要求,包括稳定性和准确性。 opencv3.1版本发行后,集成了多个跟踪算法,即tracker,大部分都是近年VOT竞赛榜上有名的算法,虽然仍有缺陷存在,但效果还不错。 ps:我在知乎上看到一个目标跟踪的介绍,感觉不错,链接在此! 单目标跟踪很简单,放一个官方例程供参考(ope
转载
2024-03-12 15:45:39
110阅读
文章目录一、黑白图片二、HSV颜色空间三、OpenCV中的HSV1. HSV二值化处理的函数:2. HSV颜色范围的选取:四、颜色直方图的获取与目标跟踪1. 颜色直方图的获取2.基于颜色直方图的目标跟踪五、camshift算法原理1. 色彩投影图(反向投影):2. meanshift3. camshift算法过程4. OpenCV中相关API1. 直方图2. CamShift函数六、基于颜色特征
转载
2024-01-05 22:51:44
32阅读
前言:在各类的智能识别中,手势识别是比较简单的一种了。本人大二,在大一下学期做了一个简单的树莓派摄像头手势识别的程序。当初选择opencv这个库是因为感觉它较skimage对新手比较友好,现在在学图像识别之前想把手势识别再看一遍,且思且记,以便日后复习。好了废话不多说,上干货!首先,我们要对手势识别的基本步骤做一个了解:打开摄像头 ——>截取图像手势——>图像处理——>手势模型匹
转载
2024-02-02 12:12:50
179阅读
支持向量机svm也是一种机器学习算法,采用空间超平面进行数据分割,在这篇博客中我们将使用svm进行手写数字的识别,使用该算法,识别率可以达到96.72%。 环境准备: vs2015 OpenCV4.5.0 下面的代码为svm模型训练代码:#include<iostream>
#include<opencv.hpp>
#include <string>
#incl
我使用OpenCV2.4.4的windows版本+Qt4.8.3+VS2010的编译器做了一个手势识别的小程序。本程序主要使到了Opencv的特征训练库和最基本的图像处理的知识,包括肤色检测等等。废话不多,先看一下基本的界面设计,以及主要功
转载
2013-07-12 19:23:00
897阅读
2评论
前言一个简单的手势识别,过程很简单,主要用到了opencv和sklearn和tkinter三个库,下面我将会展示整个项目的代码和简要说明,并且下面将会是完整的已经全部集成在三个.py文件的代码,你只需要将三个文件分别执行就可以训练出自己的手势识别模型项目思想:通过颜色寻找图像中手的轮廓由轮廓得到一串傅里叶描述子作为一个样本利用多个样本构成的数据集,在使用SVM支持向量机完成分类工作01 环境配置p
简单的手势识别,基本思路是基于皮肤检测,皮肤的颜色在HSV颜色空间下与周围环境的区分度更高,从RGB转换到HSV颜色空间下针对皮肤颜色进行二值化,得到mask:def HSVBin(img):
hsv = cv2.cvtColor(img,cv2.COLOR_RGB2HSV)
lower_skin = np.array([100,50,0])
upper_skin = np.array([125,