前言降噪。Open CV 提供了 5 种不同的平滑方法:简单模糊,简单无缩放变换的模糊,中值模糊,高斯模糊和双边滤波,它们都通过函数 cvSmooth 实现。 关于几种平滑的具体实现步骤及相关基础知识,本文不做讲解( 网上很多相关资料 ),仅就调用封装好了的平滑函数进行介绍,且仅具体介绍简单平滑处理,其它的平滑方式类似。平滑函数 cvSmooth() 函数原型: 1 void cvSmoot
KCF: Kernelized correlation filterKCF是一种鉴别式追踪方法,这类方法一般都是在追踪过程中训练一个目标检测器,使用目标检测器去检测下一帧预测位置是否是目标,然后再使用新检测结果去更新训练集进而更新目标检测器。而在训练目标检测器时一般选取目标区域为正样本,目标的周围区域为负样本,当然越靠近目标的区域为正样本的可能性越大。论文:High-Speed Tracking
转载
2024-04-29 22:03:59
284阅读
基于OpenCV的简易实时手势识别1.基本信息介绍1.1实验步骤1.2效果展示2.肤色检测+二值化+开运算+高斯模糊2.1 flip()函数原型2.2cvtColor()函数原型2.3split()函数原型2.4GaussianBlur()函数原型2.5Code3.连通空心部分+腐蚀3.1 floodFill()函数原型3.2 morphologyEx()函数原型3.3Code4.多边形拟合曲线
转载
2023-10-10 22:52:10
325阅读
最近一个项目是在做手势的识别,使用传统的图像匹配方法误差率太大,还是得上深度学习。以前我听信网上很多人的言论,认为深度学习只是概率统计的一个衍生,本身的理论水平有限,只能作为调参侠来使用神经网络,或者利用一些Trick或者技巧来实验性地改造神经网络,没有理论的支持。因此我认为深度学习只是昙花一现的事务,如今中国大兴的人工智能浪潮有点太过。但做了这么多项目以来,我越来越感觉到机器学习的强大,越来越懂
转载
2024-02-21 14:17:27
243阅读
OpenCV+Python3.5 简易手势识别OpenCV+Python3.5 简易手势识别任务OpenCV用摄像头捕获视频肤色识别——椭圆肤色检测模型去噪——滤波、腐蚀和膨胀Canny边缘检测识别——轮廓匹配 OpenCV+Python3.5 简易手势识别任务检测剪刀石头布三种手势,通过摄像头输入,方法如下:选用合适颜色空间及阈值提取皮肤部分使用滤波腐蚀膨胀等方法去噪边缘检测寻用合适方法分类O
转载
2023-10-10 09:30:06
179阅读
临近毕业,找工作压力大,由于实验室的规定,研究生三年没有实习、没有大型项目经验。为了能在简历上增点彩,就准备自己搞点小东西,希望可以找到一个称心的工作。第一个小demo是基于opencv和tensorflow的手势识别。手势识别无论是在学术界还是工业界都已经很完美了,我这里也是从最简单的开始,一步一步来,防止自己自信心被打击。基本计划是: (1) 利用opencv录制需要的手势 (2)tens
转载
2023-11-27 20:27:09
235阅读
对于刚入门的OpenCV玩家,提起目标跟踪,马上想起的就是camshift,但是camshift跟踪往往达不到我们的跟踪要求,包括稳定性和准确性。 opencv3.1版本发行后,集成了多个跟踪算法,即tracker,大部分都是近年VOT竞赛榜上有名的算法,虽然仍有缺陷存在,但效果还不错。 ps:我在知乎上看到一个目标跟踪的介绍,感觉不错,链接在此! 单目标跟踪很简单,放一个官方例程供参考(ope
转载
2024-03-12 15:45:39
110阅读
文章目录一、黑白图片二、HSV颜色空间三、OpenCV中的HSV1. HSV二值化处理的函数:2. HSV颜色范围的选取:四、颜色直方图的获取与目标跟踪1. 颜色直方图的获取2.基于颜色直方图的目标跟踪五、camshift算法原理1. 色彩投影图(反向投影):2. meanshift3. camshift算法过程4. OpenCV中相关API1. 直方图2. CamShift函数六、基于颜色特征
转载
2024-01-05 22:51:44
32阅读
前言:在各类的智能识别中,手势识别是比较简单的一种了。本人大二,在大一下学期做了一个简单的树莓派摄像头手势识别的程序。当初选择opencv这个库是因为感觉它较skimage对新手比较友好,现在在学图像识别之前想把手势识别再看一遍,且思且记,以便日后复习。好了废话不多说,上干货!首先,我们要对手势识别的基本步骤做一个了解:打开摄像头 ——>截取图像手势——>图像处理——>手势模型匹
转载
2024-02-02 12:12:50
179阅读
支持向量机svm也是一种机器学习算法,采用空间超平面进行数据分割,在这篇博客中我们将使用svm进行手写数字的识别,使用该算法,识别率可以达到96.72%。 环境准备: vs2015 OpenCV4.5.0 下面的代码为svm模型训练代码:#include<iostream>
#include<opencv.hpp>
#include <string>
#incl
我使用OpenCV2.4.4的windows版本+Qt4.8.3+VS2010的编译器做了一个手势识别的小程序。本程序主要使到了Opencv的特征训练库和最基本的图像处理的知识,包括肤色检测等等。废话不多,先看一下基本的界面设计,以及主要功
转载
2013-07-12 19:23:00
897阅读
2评论
前言一个简单的手势识别,过程很简单,主要用到了opencv和sklearn和tkinter三个库,下面我将会展示整个项目的代码和简要说明,并且下面将会是完整的已经全部集成在三个.py文件的代码,你只需要将三个文件分别执行就可以训练出自己的手势识别模型项目思想:通过颜色寻找图像中手的轮廓由轮廓得到一串傅里叶描述子作为一个样本利用多个样本构成的数据集,在使用SVM支持向量机完成分类工作01 环境配置p
简单的手势识别,基本思路是基于皮肤检测,皮肤的颜色在HSV颜色空间下与周围环境的区分度更高,从RGB转换到HSV颜色空间下针对皮肤颜色进行二值化,得到mask:def HSVBin(img):
hsv = cv2.cvtColor(img,cv2.COLOR_RGB2HSV)
lower_skin = np.array([100,50,0])
upper_skin = np.array([125,
手势识别手势识别技术是一种非常有用的技术,它可以将人类的手势转化为计算机可以理解的形式,从而实现更加自然、快速和直观的交互方式。本文将介绍一种基于MediaPipe和OpenCV的手势识别技术,可以实现对手势的实时识别和分析。 文章目录手势识别MediaPipe在本文中,我们将使用MediaPipe和OpenCV来实现手势识别技术,并且将其应用于实际场景中。总结 MediaPipeMediaPip
转载
2024-03-28 13:10:26
95阅读
Python手势识别与控制概述本文中的手势识别与控制功能主要采用 OpenCV 库实现, OpenCV是一个基于BSD许可(开源)发行的跨平台计算机视觉库, 可以运行在Linux, Windows, Android和Mac-OS操作系统上. 它轻量级而且高效—-由一系列 C 函数和少量 C++ 类构成, 同时提供了Python, Ruby, MATLAB等语言的接口, 实现了图像处理和计算机视觉方
转载
2024-02-26 18:26:34
165阅读
在前面的报告中我们实现了用SURF算法计算目标在移动摄像机拍摄到的视频中的位置。由于摄像机本身像素的限制,加之算法处理时间会随着图像质量的提高而提高,实际实验发现在背景复杂的情况下,结果偏差可能会很大。本次改进是预备在原先检测到的特征点上加上某种限制条件,以提高准确率。问题:如何判定检测到的特征点是否是我们需要的点(也就是目标区域上的点)?可行方案:用形态学找出目标的大致区域,然后对特征点判定。特
转载
2024-03-01 15:21:48
101阅读
知识要点1. OpenCV目标跟踪算法的使用大概可以分为以下几个步骤:创建MultiTracker对象: trackers = cv2.legacy.MultiTracker_create()读取视频或摄像头数据: cap = cv2.VideoCapture('./videos/soccer_02.mp4')框选ROI区域: roi = cv2.selectR
转载
2023-09-27 12:50:23
399阅读
前言:最近在看跟踪算法,看了下比较久远的meanshift、Lk光流算法等,感觉效果和速度都不是很满意。直到我看了KCF跟踪算法,这个算法速度快,效果好,具有很强的鲁棒性,思路清晰。此外作者在主页上给出了matlab和c的代码,可以更好的理解算法。本来我打算叙述一下算法的原理,但是因为网上已经有了很好的博客对KCF进行了详细的介绍,对论文原理进行了推导,所以我打算从另一个方面去看算法——从代码上看
转载
2024-08-09 17:41:19
77阅读
1. CamShift思想 Camshift全称是"Continuously Adaptive Mean-SHIFT",即连续自适应的MeanShift算法,是MeanShift算法的改进。CamShift的基本思想是视频图像的所有帧作MeanShift运算,并
转载
2024-05-09 16:11:21
504阅读
一、简介 本文章的起源是本人在做一个项目,用摄像头识别笔,根据笔的运动,绘制出其轨迹。主要应用到的方法,有运动物体识别、运动物体检测,以及绘制运动物体的运动轨迹。1、 运动物体的识别方法很多,主要就是要提取相关物体的特征,主要分为: &
转载
2023-12-22 14:39:30
71阅读