(一)平滑处理1、高斯滤波器(个人感觉是最有用的)函数:GaussianBlur (InputArray  src, OutputArray  dst, Size  ksize, double  X, double  Y=0, int  borderType=BORDE
openCV函数cvFindContours二值图像中检索轮廓 int cvFindContours( void* img, CvMemStorage* storage, CvSeq** firstContour,int cntHeaderSize, int mode, int method, CvPoint offset );     函数cvFindCon
1. 查找并绘制轮廓#include "opencv2/highgui/highgui.hpp" #include "opencv2/imgproc/imgproc.hpp" #include <iostream> using namespace cv; using namespace std; //-----------------------------------【宏定义部分】
转载 2024-03-16 10:27:20
26阅读
图像轮廓的逼近方法有两种:CHAIN_APPROX_SIMPLE 以freeman链码的方式输出轮廓,所有其他的方法输出多边形(顶点的序列)CHAIN_APPROX_NONE 压缩水平的、垂直的和斜的部分,也就是,函数只保留他们的终点部分常用的轮廓检索方式有四种,这里我们只介绍RETR_FREE一种形式:RETR_FREE:检索所有的轮廓,并重构嵌套轮廓的整个层次。下面向大家展示一下轮廓提取的相关
 注:到这一篇,opencv部分的流程过了一般,下一篇将开始PyTorch课程的流程六.轮廓检测方法<1>图像轮廓概念轮廓可以简单认为成将连续的点(连着边界)连在一起的曲线,具有相同的颜色或者灰度。轮廓是图像目标的外部特征,这种特征对于我们进行图像分析,目标识别和理解等更深层次的处理都有很重要的意义。边缘检测和轮廓检测的区:边缘检测主要是通过一些手段检测数字图像中明暗变化剧烈
一:内容介绍 本节主要介绍OpenCV的imgproc模块的图像轮廓与分割部分: 1. 查找并绘制轮廓 2. 寻找物体的凸包 3. 使用多边形将轮廓包围 4. 图像的矩 5. 分水岭算法 6. 图像修补 二:学习笔记 1. findContours()函数查找图像轮廓和canny检测边缘、hough检测直线,这些都非常使用(参见:OpenCV成长之路(8):直线、轮廓的提取与描述
转载 2024-05-21 23:31:42
264阅读
1.图像的矩  参考链接:。,图像的几何矩定义如下:    其中与的取值范围为,图像的阶中心矩定义如下:    其中与的取值范围为,与代表图像的质心。对于离散的数字图像,积分变换转换为求和变换后,几何矩和中心矩公式如下:    其中与的取值范围为,与分别代表图像的宽度和高度。归一化的中心矩定位为:,其中,其中是的维度,其中是的维度,阶段表示参数的指数关系  利用二阶和三阶规格中心矩可以导出下面7个
程序采用OpenCV中国的例程,下面列举了各个详细函数的功能及简单说明。 /************************************************** * 轮廓检测 * 主要函数: * cvFindContours * cvDrawContours **************************************************/
1. 使用多边形将轮廓包围常用的多边形轮廓函数:1.1 返回外部矩形边界Rect boundingRect( InputArray points );1.2 寻找最小包围矩形RotatedRect minAreaRect( InputArray points );1.3 寻找最小包围圆形void minEnclosingCircle( InputArray points,CV_OUT Point2
OpenCv学习笔记1-轮廓检测 文章目录OpenCv学习笔记1-轮廓检测一、轮廓检测的基本原理二、实验流程1.颜色空间转换2.二值化处理3.腐蚀膨胀4.轮廓绘制完整代码 一、轮廓检测的基本原理实现思路:通过找出在一张图片中满足特定像素值的像素点,实现轮廓绘制。实验流程: (1)颜色空间转换 (2)二值化处理 (3)腐蚀膨胀 (4)轮廓绘制二、实验流程1.颜色空间转换实验第一步需要将RGB颜色空间
转载 2023-10-08 21:27:43
237阅读
第八章1. 查找并绘制轮廓(1) 寻找轮廓:findContours() 函数注: (2) 绘制轮廓:drawContours()函数层次结构信息:2. 寻找物体的凸包(1) 凸包概念:(2) 寻找凸包函数:convexHull()3. 根据轮廓提取多边形(1) 返回外部矩阵边界:boundingRect() 函数 (2) 寻找最小包围矩阵:minAreaRect()函数 (3) 寻找最小包围圆形
目录1.cv2.boundingRect()2.cv2.minAreaRect()3. cv2.minEnclosingCircle()4.cv2.fitEllipse() 5.cv2.fitLine()  在计算轮廓时,可能并不需要实际的轮廓,而仅需要一个接近于轮廓的近似多边形。OpenCV提供了多种计算轮廓近似多边形的方法。1.cv2.boundingRect()能够返回包
在上一个教程中,我们讲到了轮廓的查找以及绘制,但是只掌握这些还是远远不够的,我们经常需要一些更加复杂的操作,本次教程我们将谈谈关于轮廓的特征。图像的矩图像识别的一个核心问题是图像的特征提取,简单描述即为用一组简单的数据(数据描述量)来描述整个图像,这组数据月简单越有代表性越好。良好的特征不受光线、噪点、几何形变的干扰,图像识别技术的发展中,不断有新的描述图像特征提出,而图像不变矩就是其中一个。从图
在我们进行图像处理的时候,有可能需要对图像进行细化,提取出图像的骨架信息,进行更加有效的分析。      图像细化(Image Thinning),一般指二值图像的骨架化(Image Skeletonization) 的一种操作运算。      所谓的细化就是经过一层层的剥离,从原来的图中去掉一些点,但仍要保持原来的
轮廓之间的父子关系使用函数 cv2.findContours 来查找轮廓, 我们需要传入一个参数:轮廓提取模式(Contour_Retrieval_Mode)。 我们总是 把它设置为 cv2.RETR_LIST 或者是 cv2.RETR_TREE,效果还可以。 但是它们到底代表什么呢? 同时,我们得到的结果包含 3 个数组, 第一个图像,第二个是轮廓,第三个是层次结构。 但是我们从来没
滤波的目的:1、抽出对象的特征作为图像识别的特征模式2、适应图像处理的要求,消除图像数字化时所混入的噪声平滑滤波是低频增强的空间域滤波技术,一般用来模糊图像或者消除噪声这里我们简单谈空间域的滤波处理,主要是把滤波器想象成一个包含加权系数的窗口,平滑是,进行加权平均,得到像素点的值1、方框滤波之BoxBlur函数boxblur函数的作用是使用boxfilter(方框滤波器),从src输入,dst输出
1、findContours()//寻找得到轮廓输入image; 输出contours,是二维向量的Point。如:vector< vector>contours; hierarchy;每个轮廓的信息,后面要用到这些重要信息。 mode;轮廓检索模式,网上很多参数说明。 method;轮廓的近似办法。 offset;我没用过,直接默认参数。2、这里说一下mode这个参数。RETR_EX
相较于传统方法我使用了两种不一样的方法来做到了对图像上的噪声小点清除原图:传统方法对于清除噪声小点无外乎就是图像平滑,高斯模糊,中值模糊,双边滤波。这一类方法在不会调参深入了解过的情况下,使用起来无疑是鸡肋。轮廓描绘清除通过对图像做一个轮廓描绘,把它描绘在新的白色画布上。与此同时,由于图像小点的面积单一且小,我们做一个if 判断,只把面积大于一定阈值的轮廓描绘在画布上。import cv2 imp
本系列会完成一些任务,顺便讲解里面的一部分相关代码,本系列为opencv的学习笔记,实践篇将应用学习笔记完成一系列OCR任务  opencv博客汇:1.阈值处理和轮廓检测1.0 阈值轮廓的实践阈值处理1.固定阈值作用:选取一个全局阈值,然后就把整幅图像分成了非黑即白的二值图像了. 函数为cv2.threshold()‘ret, dst = cv2.threshold(src, thres
在学习渲染的旅途中,你可能会时不时遇到模型边缘有锯齿的情况。这些锯齿边缘(Jagged Edges)的产生和光栅器将顶点数据转化为片段的方式有关。在下面的例子中,你可以看到,我们只是绘制了一个简单的立方体,你就能注意到它存在锯齿边缘了:可能不是非常明显,但如果你离近仔细观察立方体的边缘,你就应该能够看到锯齿状的图案。如果放大的话,你会看到下面的图案:这很明显不是我们想要在最终程序中所实现的效果。你
  • 1
  • 2
  • 3
  • 4
  • 5