目录环境配置写在前面:三个程序第一个程序:训练第二个程序:图像预处理1.二值化2.去除小联通域(即噪点)3.roi提取4.将图片压缩为28*28格式5.完整代码第三个程序:测试 环境配置语言:python 平台:pycharm 库: cv2 numpy keras(这个需要先安装fensorflow库)写在前面:手写数字识别,是很多深度学习教程里的入门第一例,但是这些教程往往只告诉了你怎么去构造
转载
2023-11-06 18:37:53
91阅读
关于SVM的原理有很多优秀的视频和资料,这里我主要说下利用SVM对数字识别的具体应用首先,需要有数字的训练样本把0-9文件夹放入模版匹配样本之中,自己可修改。 核心思路:1:获取一张训练图片后会将图片特征写入到容器中,紧接着会将标签写入另一个容器中,这样就保证了特征和标签是一一对应的关系。2:特征可用LBP,HOG等提取,但是我们这里主要说SVM训练过程,所以用最简单的方法,即把训练图片
转载
2023-09-15 15:51:15
144阅读
上篇文章我们用的特征是训练样本的所有像素点值,虽然方便但不准确。这篇文章主要介绍用SVM+HOG特征对数字进行识别。详细请看上篇文章,它们主要区别在于训练样本HOG特征的提取,其他基本一样,所以我直接附上代码。下面代码是opencv3和C++可以根据自己需要修改训练样本类别,数目,尺寸。oss的训练样本路径,src的检测图片路径。#include <stdio.h>
#includ
转载
2023-09-18 11:45:28
142阅读
支持向量机:将不同类样本在样本空间进行分割,得出一个间隔最大超平面。调用OpenCV中SVM分类器流程如下:1)建立训练样本注意:CvSVM的train函数要求训练样本存储在float类型的Mat结构中,故需将训练数据存储为符合条件的Mat变量中。2)设置SVM分类器参数注意:此处主要涉及到SVM分类器相关参数设置。下面是自己对SVM分类器相关参数总结。 参数介绍 degree:内核函数
转载
2024-01-28 19:59:47
49阅读
SVM的理论知识见 SVM的一些总结与认识 --入门级 之前一直以为,用SVM做多分类,不就是用多个SVM分类么,请形状类似于一个二叉树,如下: 即,将所有样本当作输入,其中在训练第一个分类器SVM_1的时候,其正样本为属于类别1的样本,其负样本为剩余的其他所有样本,这就称为 一对其余法,这样做虽然训练的时间从道理上来讲是相对较快的,但是它会带来一系列的问题: 1. 有可能有一个样本在
前两篇文章写了基于两种特征提取的SVM数字识别这篇文章主要是关于模型评估,即识别数字的正确率 下面代码是opencv3 c++加载的XML文件是之前代码训练好的。测试集是我的“”数字检测样本“”文件夹下的0-9个文件夹所包含的检测样本 #include <stdio.h>
#include <time.h>
#includ
转载
2024-02-19 14:35:03
97阅读
#include <stdio.h> #include <time.h> #include <math.h> #include
原创
2021-07-29 13:36:28
384阅读
目的在本章中,将学习:级联分类器的训练过程学习函数:
opencv_createsamplesopencv_annotationopencv_traincascadeopencv_visualisation原理使用弱分类器的增强级联包括两个主要阶段:训练阶段和检测阶段。对象检测教程中介绍了使用基于HAAR或LBP(中心点为阈值,大于它的设为1,小于它的设为0)模型的检测阶段。本文档概述了训练
转载
2024-04-28 10:42:19
57阅读
SVM数字识别 #include "stdafx.h"
#include <fstream>
#include "opencv2/opencv.hpp"
#include <vector>
using namespace std;
using namespace cv;
#define SHOW_PROCESS 1
#define ON_STUDY 1
class NumT
原创
2013-09-23 10:09:51
866阅读
Opencv提供了几种分类器,例程里通过字符识别来进行说明的1、支持向量机(S
转载
2023-01-05 11:55:19
367阅读
opencv c++ svm支持向量机,mnist手写数字分类模型训练。
原创
2023-03-30 19:35:50
374阅读
支持向量机SVM是从线性可分情况下的最优分类面提出的。所谓最优分类,就是要求分类线不但能够将两类无错误的分开,而且两类之间的分类间隔最大,前者是保证经验风险最小(为0),而通过后面的讨论我们看到,使分类间隔最大实际上就是使得推广性中的置信范围最小。推广到高维空间,最优分类线就成为最优分类面。 支持向...
原创
2021-07-16 15:02:32
616阅读
opencv实战从0到N (10)—— adboost训练分类器Adboost级联分类器1,Adboost级联分类器可以用来训练一个目标检测器,级联分类器包括多个强分类器,每个强分类器又包含多个弱分类器,通过将非目标样本一层层的排除,保证了目标检测的准确性。2,如何利用Adboost训练目标检测器?opencv提供了训练的工具opencv_traincascade.exe。通过收集和标注样本,使用
转载
2024-04-20 18:58:36
32阅读
SVM的原理SVM也叫支持向量机,最大间隔分类器。在分类、回归方面普遍出现。 我们在这里考虑使用二维空间来表示一系列数据,每个数据都有它自身的(x,y),然后用一条直线将其进行分类。这应该就是最简单的线性可分。 一般来说,当两个类别距离这条直线越远,那么分类的置信度就越高。函数间隔与几何间隔上述我们提到二维空间中的样本数据,但是一般来说,我们的数据是处于高维空间的。那么这里我们就是用公式 wTx+
转载
2024-03-25 17:35:42
47阅读
文章目录0 前言课题简介一、识别效果二、实现1.数据集2.实现原理和方法3.网络结构最后 0 前言? 这两年开始毕业设计和毕业答辩的要求和难度不断提升,传统的毕设题目缺少创新和亮点,往往达不到毕业答辩的要求,这两年不断有学弟学妹告诉学长自己做的项目系统达不到老师的要求。为了大家能够顺利以及最少的精力通过毕设,学长分享优质毕业设计项目,今天要分享的是? opencv python 深度学习垃圾分类
转载
2024-02-12 15:05:06
98阅读
最近不是华为云推出这个“AI创想秀,邂逅“华为云ModelArts”征文大赛”活动吗?于是小编我也打算去参与参与。虽然关于机器学习小编不是懂很多,但是小编过去也算是接触过的,并且还获过奖,当时是识别验证码。1. 在AI平台ModelArts上传图片数据前面小编就不说了(关于注册华为云账号),注册账号之后应该来到这个界面 点击那个红色按钮管理控制台,来到如下这个界面 因为小编创建过桶和文件夹,并且上
一般做分类比较重要的有三个步骤,每一步都对分类结果有很大的影响1.找到合适的特征,举个栗子,例如题主的年龄估计,可以对图像进行预处理二值化(对图像分类这步很重要), 之后取横向的线的数目作为一个特征(纯属猜测,不确定这个特征是否有效),把很多个特征组成一个特征向量2.选择合适的分类器,常用的分类器有SVM,LR,ANN等,对不同场景使用合适的分类器,上面有朋友提到LR,当然LR比较简单而且速度...
原创
2021-06-10 18:21:49
445阅读
点赞
一般做分类比较重要的有三个步骤,每一步都对分类结果有很大的影响1.找到合适的特征,举个栗子,例如题主的年龄估计,可以对图像进行预处理二值化(对图像分类这步很重要), 之后取横向的线的数目作为一个特征(纯属猜测,不确定这个特征是否有效),把很多个特征组成一个特征向量2.选择合适的分类器,常用的分类器有SVM,LR,ANN等,对不同场景使用合适的分类器,上面有朋友提到LR,当然LR比较简单而且速度...
原创
2022-03-02 09:26:54
284阅读
车牌识别的属于常见的 模式识别 ,其基本流程为下面三个步骤:1) 分割: 检测并检测图像中感兴趣区域;2)特征提取: 对字符图像集中的每个部分进行提取;3)分类: 判断图像快是不是车牌或者 每个车牌字符的分类。 车牌识别分为两个步骤, 车牌检测, 车牌识别, 都属于模式识别。基本结构如下:一、车牌检测 1、车牌局部化(分割车牌区域),根据尺寸等基本信息去除非车牌图像
转载
2023-09-03 18:07:17
455阅读
本文主要是对下面网址博客中内容的实例操作:在上述博客中,详细的讲述了OpenCV训练分类器的做法。虽然他的步骤很详细,但是不能被人很快的利用到实践中来。所以我归纳这些内容,能够让人很快的动手操作起来,这样对于一个新手来说一个多小时就可以很快的掌握做分类器的方法了。 一:分别准备好正负样本将正样本剪裁统一大小,放到一个的文件夹里面。将一些和待检测图像无关的照片放入一个文件夹里面。--负样本
转载
2024-05-29 07:38:07
69阅读