支持向量机:将不同类样本在样本空间进行分割,得出一个间隔最大超平面。调用OpenCVSVM分类流程如下:1)建立训练样本注意:CvSVM的train函数要求训练样本存储在float类型的Mat结构中,故需将训练数据存储为符合条件的Mat变量中。2)设置SVM分类参数注意:此处主要涉及到SVM分类相关参数设置。下面是自己对SVM分类相关参数总结。 参数介绍 degree:内核函数
SVM的理论知识见 SVM的一些总结与认识 --入门级 之前一直以为,用SVM做多分类,不就是用多个SVM分类么,请形状类似于一个二叉树,如下: 即,将所有样本当作输入,其中在训练第一个分类SVM_1的时候,其正样本为属于类别1的样本,其负样本为剩余的其他所有样本,这就称为 一对其余法,这样做虽然训练的时间从道理上来讲是相对较快的,但是它会带来一系列的问题: 1. 有可能有一个样本在
支持向量机SVM是从线性可分情况下的最优分类面提出的。所谓最优分类,就是要求分类线不但能够将两类无错误的分开,而且两类之间的分类间隔最大,前者是保证经验风险最小(为0),而通过后面的讨论我们看到,使分类间隔最大实际上就是使得推广性中的置信范围最小。推广到高维空间,最优分类线就成为最优分类面。 支持向...
qt
原创 2021-07-16 15:02:32
616阅读
一般做分类比较重要的有三个步骤,每一步都对分类结果有很大的影响1.找到合适的特征,举个栗子,例如题主的年龄估计,可以对图像进行预处理二值化(对图像分类这步很重要), 之后取横向的线的数目作为一个特征(纯属猜测,不确定这个特征是否有效),把很多个特征组成一个特征向量2.选择合适的分类,常用的分类SVM,LR,ANN等,对不同场景使用合适的分类,上面有朋友提到LR,当然LR比较简单而且速度...
SVM
原创 2021-06-10 18:21:49
445阅读
1点赞
一般做分类比较重要的有三个步骤,每一步都对分类结果有很大的影响1.找到合适的特征,举个栗子,例如题主的年龄估计,可以对图像进行预处理二值化(对图像分类这步很重要), 之后取横向的线的数目作为一个特征(纯属猜测,不确定这个特征是否有效),把很多个特征组成一个特征向量2.选择合适的分类,常用的分类SVM,LR,ANN等,对不同场景使用合适的分类,上面有朋友提到LR,当然LR比较简单而且速度...
原创 2022-03-02 09:26:54
284阅读
煤矸石分类项目,提取的煤矸石灰度均值和灰度方差作为特征进行分类SVM的简单代码如下,使用的二次封装的opencv库,在其他机器上运行将头文件和条件编译宏替换成opencv自己的就可以了 #include "sv.h" #ifdef _DEBUG #pragma comment(lib,"BoxCV
原创 2021-05-25 14:47:54
341阅读
依据机器学习算法如何学习数据可分为3类: 有监督学习:从有标签的数据学习,得到模型参数,对测试数据正确分类; 无监督学习:没有标签,计算机自己寻找输入数据可能的模型; 强化学习(reinforcement learning):计算机与动态环境交互,学习错误反馈达到更优的目的。依据机器学习期望结果来分类分类:输入被分为N个类别的一种; 回归:输出是连续值;如依据房子的大小,时间,位置来预测房子的
转载 2024-04-24 09:17:11
91阅读
感知机 要理解svm,首先要先讲一下感知机(Perceptron),感知机是线性分类,他的目标就是通过寻找超平面实现对样本的分类;对于二维世界,就是找到一条线,三维世界就是找到一个面,多维世界就是要找到一个线性表达式,或者说线性方程: f(x) = ΣθiXi 表达式为0,就是超平面,用来做分界线
转载 2019-12-17 10:31:00
358阅读
2评论
文章导航1.收集正样本2.处理正样本3.收集负样本4.生成描述文件5.训练分类 1.收集正样本这里需要注意的是,正样本图需要裁剪,使目标物体轮廓很清晰,且正样本图越多越好。2.处理正样本将正样本图片转为灰度图,方便后续处理。def convert_gray(f, **args): # 图片处理与格式化的函数 rgb = io.imread(f) # 读取图片 gray =
转载 2024-03-03 10:11:20
157阅读
Opencv提供了几种分类,例程里通过字符识别来进行说明的1、支持向量机(S
转载 2023-01-05 11:55:19
372阅读
这篇是我暂时学的教程里的所有东西了,我也都加上了我的理解。但SVM是门学问,还要继续学的更深一点    SVM分类里面的东西好多呀,碾压前两个。怪不得称之为深度学习出现之前表现最好的算法。   今天学到的也应该只是冰山一角,懂了SVM的一些原理。还得继续深入学习理解呢。   一些关键词:&nb
转载 2023-11-28 21:16:52
7阅读
想问一下各位大佬,在对数据集做svm分类时在这个部分一直报这个错误是因为什么呀
原创 2023-06-21 20:37:19
170阅读
1评论
环境:opencv-4.0,python,c++ 方法:opencv_createsamples,opencv_traincascade,haar特征或者lbp特征+cascade分类 流程:    收集样本,处理样本     训练分类     目标检测一. 收集样本,处理样本 收集正样本关于正样本的收集
文章目录1. 引言2. 基本原理3. 函数解析创建模型设置模型类型设置参数C设置核函数设置迭代算法的终止标准训练SVM模型预测结果误差计算保存SVM模型从文件中加载SVM4. 示例代码官方示例(python)推理阶段(C++版本)5. 小结 1. 引言opencv中集成了基于libsvm1实现的SVM接口,便于直接进行视觉分类任务。对于数据处理和可视化需求来说,可以用python接口opencv
一 采集数据并制作正负样本数据集1.1 录制视频 1.2 将单个视频截取为指定分辨率的图像1.3 处理负样本视频1.4 本次训练正负样本数量选择与图片重编号二 利用matlab制作制作正样本标注框文件三 开始训练opencv级联分类3.1 生成正样本文件pos.txt3.1.1 对label.txt进行处理,3.1.2 生成暂时性的pos.txt即pos_tmp.txt3.1
文章目录前言一、项目结构在这里插入图片描述二、源码1.程序入口2.SVM_Classify类的设计3.Classfication_SVM类的设计总结 前言本文主要使用opencv实现图像分类一、项目结构二、源码1.程序入口int main(void) { //int clusters=1000; //Classfication_SVM c(clusters); 特征聚类 //c.Tra
提供一个人脸检测的训练工程,其里面包括原始的训练样本、制作好的训练样本、训练指令等,感觉其样本分类特别麻烦其下载地址为:opencv使用cascade分类训练人脸检测的样本与相关文件1 、opencv里的分类大概介绍:  OpenCV中有两个程序可以训练级联分类opencv_haartraining and opencv_traincascade``。 ``opencv_tra
这是我自己实现的SVM分类的Github代码,有需要自取。这是MATLAB版本的实现,以后会更新python版本的实现https://github.com/yingdajun/SVM-
原创 2021-09-08 10:15:56
2101阅读
opencv c++ svm支持向量机,mnist手写数字分类模型训练。
原创 2023-03-30 19:35:50
374阅读
线性分类:    首先给出一个非常非常简单的分类问题(线性可分),我们要用一条直线,将下图中黑色的点和白色的点分开,很显然,图上的这条直线就是我们要求的直线之一(可以有无数条这样的直线)    假如说,我们令黑色的点 = -1, 白色的点 =  +1,直线f(x) = w.x + b,这儿的x、w是向量,其实写成这种
  • 1
  • 2
  • 3
  • 4
  • 5