提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录前言一、基2 FFT二、使用步骤1.分解2.旋转因子代码 前言提示:这里可以添加本文要记录的大概内容:在学习各种基FFT之前,先来简单了解一下matlabfft()函数是怎么做的。 MATLAB提供了一个称为fft的函数用于计算一个向量x的DFT。调用X= fft(x,N)就计算出N点的DFT。如果向量x的长度小于N
Facebook的caffe2是caffe的升级版,相较于caffe的主要不同是将layer替换成了更为强大灵活的operator以及添加了类似matlab中的工作区概念的workspace,基本数据结构blob和net保持不变。关于caffe2的教程,英语好的人可以看官方教程,英语不好的朋友可以看caffe2教程入门(python版),也是基于官方教程整理出来的,整理的也比较好。下面是我对“ca
转载 2023-12-03 12:07:07
124阅读
Matlab数字数字图像处理函数汇总: 1、数字数字图像的变换 ① fft2fft2函数用于数字数字图像的二维傅立叶变换,如:i=imread('104_8.tif'); j=fft2(i); ②ifft2::ifft2函数用于数字数字图像的二维傅立叶反变换,如: i=imread('104_8.tif'); j=fft2(i); k=ifft2(j); 2、模拟噪声生成函数和预定义滤波器
迭代器 可迭代对象 内部含有__iter__方法的就是可迭代对象,遵循可迭代协议。    可迭代协议: 假如我们自己写了一个数据类型,希望这个数据类型里的东西也可以使用for被一个一个的取出来,那我们就必须满足for的要求。这个要求就叫做“协议”。   可以被迭代要满足的要求就叫做可迭代协议。可迭代协议的定义非常简单,就是内部
学习目标使用OpenCV计算傅里叶变换使用Numpy中的傅里叶变换(FFT)傅里叶变换的应用学习函数如下:cv2.dft(),cv2.idft() 理论傅里叶变换用来分析不同滤波器的频率特性。对于图像而言,2D离散傅里叶变换(DFT)用于寻找频率域。傅里叶变换的快速算法,FFT,常用于计算DFT。对于正弦信号,,我们称f为频率信号,如果频率域确定,那么我们可以看到f的具体形状(spike)。如果一
转载 2024-06-16 20:53:17
147阅读
OpenCV Python 图像变换【目标】利用OpenCV 对图像进行 傅里叶变换利用NumPy的FFT函数傅里叶变换的应用cv2.dft(), cv2.idft()【原理】傅里叶变换常用于频域图像分析。对于图像来说,2D DFT 常用于寻找频域特征,一个快速算法 FFT(Fast Fourier Transform)用于计算DFT。更详细的资料请查找图像处理或者信号处理和 【参考】。对于正弦信
转载 2023-08-10 18:00:46
264阅读
题外话 好久没更新了,这段时间实在是摸鱼,人快闲出毛病来了。这是一个选修课的大作业的一部分,2D-FFT的思路是借鉴了一个博客的,但做了少许改进。DCT是自己写的,都不难。这门课咋只得了81分,破防了。一、2FFT简述 就不放公式了,2FFT就是两次一维FFT。一个2维信号可以看作一个矩阵,先行再列或者先列再行都可以。示意图如下图所示: 如前所述,2FFT编写的关键仍在1维FFT。按照蝶形流
无奈笔记本的性能太渣,双系统切换太麻烦,索性就拿tx2来当第二台电脑,需要在linux上跑的demo都放到tx2上跑; 先安装caffe(我重刷了两次机o(『﹏『)o)。 先配置依赖项 sudo apt-get install libprotobuf-dev libleveldb-dev libsnappy-dev libhdf5-serial-dev protobuf-compiler
文章目录文章目录前言N19:不要把函数返回的多个数值拆分到三个以上的变量中1、详解2、总结N20:遇到意外情况时应该抛出异常,不要返回None1、详解2、总结N22:用数量可变的位置参数,给函数设计清晰的参数列表1、详解2、总结前言提示:Effective Python第二版,作者是Brett Slatkin, Google首席软件工程师,立足于python3,主要讲解原理与常见用法。第3章主要讲
转载 2024-06-16 20:53:22
35阅读
python写短时傅里叶变换调用“ torch.stft ”函数torch.stft() 是 PyTorch 中用于计算短时傅里叶变换 (STFT) 的函数, 它的主要功能是将一个 1D/2D/3D 张量组成的时间序列 (time series) 转化为 STFT 值。该函数通过在时间域上对信号进行滑动窗口并执行 FFT 来计算 STFT。它的函数原型如下:torch.stft(input, n_
如果输出都是NaN一定是输入有NaN。频率计算f = NFs(i-1)其中:N为采样点数,Fs为采样频率,i为第i个点(从1开始计数)。
原创 2021-06-08 14:53:54
698阅读
FFT函数Y = fft(x)如果x是向量,则fft(x)返回该向量的傅里叶变换如果x是矩阵,则fft(x)将x的各列视为向量,并返回每列的傅里叶变换。如果x是一个多维数组,则 fft(X) 将沿大小不等于 1 的第一个数组维度的值视为向量,并返回每个向量的傅里叶变换。Y = fft(X,n)如果 X 是向量且 X 的长度小于 n,则为 X 补上尾零以达到长度 n。如果 X 是向量且 X 的长度大
转载 2024-01-11 17:26:59
378阅读
原文地址:http://http://blog.sina.com.cn/s/blog_49c02a8c0100ysuc.html x=load(‘cur.txt’); %读入变换数据 fs = 100; %设定采样率 N=128; %变换点数 n=0:N-1; t=n/fs; y=fft(x); %进行FFT变换 mag = abs(y); %求取幅值 f=(0:length(y)
转载 精选 2015-07-14 21:13:34
2223阅读
1.Matlab里的IFFT/FFT函数系数的问题Matlab里的ifft函数会在做完正常的变换后除以ifft变换的点数,而fft函数中没有系数。Matlab里的IFFT变换及FFT变换:因此在Matlab上,利用fft函数做频谱分析,应注意以下几点:(1)应对FFT的结果除以FFT点数,才能得到各频点的真实幅值。(2FFT的频率分辨力等于采样频率除以FFT点数,即:(3)对实序列进行FFT,结
一.调用方法X=FFT(x);X=FFT(x,N);x=IFFT(X);x=IFFT(X,N)用MATLAB进行谱分析时注意:(1)函数FFT返回值的数据结构具有对称性。例:N=8;n=0:N-1;xn=[4 3 2 6 7 8 9 0];Xk=fft(xn)→Xk =39.0000         &nbs
转载 2023-09-15 14:05:13
470阅读
FFT2
原创 2022-12-31 01:03:06
188阅读
Fourier Transforms傅立叶变换是将在时间或空间中采样的信号与频率采样的相同信号相关联的数学公式。 在信号处理中,傅里叶变换可以揭示信号的重要特征,即其频率分量。这个公式也不该陌生吧,就是DFT的公式,见博文:终于到来的DFT里面给出DFT的公式:对比一下,你会发现其实二者是一样的。MATLAB®中的fft函数使用快速傅里叶变换算法来计算数据的傅里叶变换...
原创 2022-04-14 17:00:16
435阅读
Fourier Transforms傅立叶变换是将在时间或空间中采样的信号与频率采样的相同信号相关联的数学公式。 在信号处理中,傅里叶变换可以揭示信号的重要特征,即其频率分量。这个公式也不该陌生吧,就是DFT的公式,见博文:终于到来的DFT里面给出DFT的公式:对比一下,你会发现其实二者是一样的。MATLAB®中的fft函数使用快速傅里叶变换算法来计算数据的傅里叶变换...
传统FFT利用三角函数的正交性,将信号分离出来,从而将时域的信号变换到频域。但是,它有一个很重要的前提:输入的序列必须是周期内等间隔采样的值,这样,FFT计算的结果才是我们想要的。 实际的情况是,很难做到等间隔采样。比如,交流电的频率是变化的,并不是固定的50Hz。如果采用按照50Hz的信号来采样,则计算结果将无法反映原始信号。 为什么会出现上述的
转载 2024-03-14 14:04:37
229阅读
一 不同色彩空间的转换OpenCV中有数百种关于在不同色彩空间之间转换的方法。当前,在计算机中有三种常用的色彩空间:灰度,BGR以及HSV(Hue,Saturation,Value)。灰度色彩空间是通过去除色彩信息来将其转换成灰阶,灰度色彩空间对中间处理特别有效,比如人脸检测。BGR,即蓝-绿-红色彩空间,每一个像素点都由一个三元数组来表示,分别代表蓝、绿、红三种颜色。网页开发者可能熟悉另一个与之
  • 1
  • 2
  • 3
  • 4
  • 5