什么是暴力匹配首先,任取图像 A 的一个特征描述符,计算它到图像 B 中所有特征描述符的距离;然后,将所得到的距离进行排序;最后,选择距离最短的特征,作为 A-B 的匹配点。可想而知 暴力匹配所需要的计算量是非常庞大的。暴力匹配流程特征提取:寻找易于追踪和对比的特征。特征描述:对提取的特征用计算机的语言进行描述,使得其能够在其它图像中寻找到相似区域。暴力匹配:根据特征描述,在其它图像中寻找所有相同
原创 2023-05-13 09:12:18
618阅读
作者:万俟淋曦 零、简介   OpenCV的全称是Open Source Computer Vision Library,是一个跨平台的计算机视觉库。OpenCV是由英特尔公司发起并参与开发,以BSD许可证授权发行,可以在商业和研究领域中免费使用。OpenCV可用于开发实时的图像处理、计算机视觉以及模式识别程序。该程序库也可以使用英特尔公司的IPP进行加速处理。   OpenCV用C++语言编写,
转载 2024-05-06 20:40:09
21阅读
在图像目标识别技术的研究应用中,模板匹配技术是其中一个重要的研究方向,它具有算法简单、计算量小以及识别率高的特点。模板匹配的基本原理是通过相关函数的计算来找到它和被搜索图的坐标位置。比如可以设模板 T ( n×m像素点)叠放在搜索图S上平移,模板覆盖下的那块搜索图叫做子图, i , j 为这块子图的左上角像点在S图中的坐标 , 叫参考点 , 1≤ i , j ≤n -m+ 1。比较T和Si , j
Sobel边缘检测算子1.基本原理     Sobel算子是一阶导数的边缘检测算子,在算法实现过程中,通过3×3模板作为核与图像中的每个像素点做卷积和运算,然后选取合适的阈值提取边缘。    采用3×3邻域可以避免在像素之间内插点上计算梯度。Sobel算子也是一种梯度幅值,即:其中的偏导数Sx和Sy可用卷积模板来实现。其模板如下:  &
文章目录BFMatcher演示SURF--BFMatchBFMatcherBrute Force匹配opencv二维特征点匹配常见的办法,BFMatcher总
原创 2022-08-24 21:27:47
1485阅读
因为pcl的点云模板匹配遇到了各种困难,暂时先用opencv的模板匹配函数做一个简单的焊缝识别,看看效果。此方法的缺陷就在于物体和相机位置必须固定,只允许微小位移,否则数据将失效。1什么是模板匹配?模板匹配是一种用于查找与模板图像(补丁)匹配(类似)的图像区域的技术。虽然补丁必须是一个矩形,可能并不是所有的矩形都是相关的。在这种情况下,可以使用掩模来隔离应该用于找到匹配的补丁部分。它是如何工作的?
暴力匹配算法,也称为朴素匹配算法,是一种简单的字符串匹配算法。它的基本思想是从
原创 2023-06-29 00:40:35
144阅读
classViolenceMatch{publicstaticvoidmain(String[]args){Stringstr1="addgadfhfgsfgs";Stringstr2="fhf";intindex=violenceMatch(str1,str2);System.out.println("index="+index);}//暴力匹配算法实现publicstaticintviolen
转载 2020-10-30 19:49:22
524阅读
2点赞
模板匹配是指在图像A中寻找与图像B最相似的部分,一般A称为输入图像,B称为模板图像模板匹配函数result = cv2.matchTemplate(image , temp1 , method , [,mask])result 函数每次计算模板和输入图像的重叠区域相似度之后将结果存入映射图像result中,result图像中每个点都代表一次相似度的比较,类型是单通道32位浮点型  若输入图像的尺寸
字符串暴力匹配算法详解说明字符串暴力匹配算法是指在一个长字符串中暴力寻找是否包含某一子串所谓暴力匹配,就是不使用任何其他算法,将两个字符串中的字符一一进行比对从长字符串的第一个字符开始,判断是否和子字符串的第一个字符相等,如果相等,则在比较后面的字符如果第一个字符就不相等,则通过指针后移依次判断长字符串后边的字符是否和第一个字符相等,直到字符串末尾一旦在长字符串中匹配到子字符串的第一个字符,就依次
转载 2024-04-11 17:28:08
51阅读
opencv图像特征点的提取和匹配(一)opencv中进行特征点的提取和匹配的思路一般是:提取特征点、生成特征点的描述子,然后进行匹配opencv提供了一个三个类分别完成图像特征点的提取、描述子生成和特征点的匹配,三个类分别是:FeatureDetector,DescriptorExtractor,DescriptorMatcher。从这三个基类派生出了不同的类来实现不同的特征提取算法、描述及匹
目录概念步骤单个对象匹配代码实现一代码实现二多个对象匹配代码实现 概念模板匹配与剪辑原理很像,模板在原图像上从原点开始浮动,计算模板(图像被模板覆盖的地方)的差别程度,这个差别程度的计算方法在opencv里有六中,人后将每次计算的结果放入一个矩阵里面,作为输出结果。加入原图形是A*B大小,则输出结果的矩阵是(A-a+1)(B-b+1) 匹配完之后,告诉你每一个位置的结果,(结果会因为匹配算法不同
文章目录我的学习背景图像相似度计算感知哈希算法局部匹配 由于最近工作中需要用到图像快速图像匹配的事情,在此做一下学习记录。 主要是两个,一个是图像相似度计算,一个是图像模板匹配。我的学习背景之前的博客介绍过关于GAutomator的应用。但是GA只是提供一些基于游戏控件的基础逻辑。比如给一个控件全路径查找坐标,控件长宽;根据坐标/控件模拟点击;查找控件上的图片和文字,等等。当作一个游戏自动化的
OpenCV入门基础知识1. 模板匹配2. 梯度算法3. 阈值算法4. 形态学操作5. 摄像头的读取 1. 模板匹配本次以扑克牌上的菱形为例:import cv2 import numpy as np image = cv2.imread("poker.jpg") gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) #转化为灰度图 #选取图像的一个区域
使用opencv自带的模板匹配1、目标匹配函数:cv2.matchTemplate() res=cv2.matchTemplate(image, templ, method, result=None, mask=None) image:待搜索图像 templ:模板图像 result:匹配结果 method:计算匹配程度的方法,主要有以下几种: CV_TM_SQDIFF   &n
基础介绍模板匹配是指在当前图像A里寻找与图像B最相似的部分,本文中将图像A称为模板图像,将图像B称为搜索匹配图像。引言:一般在Opencv里实现此种功能非常方便:直接调用 result = cv2.matchTemplate(templ, search, method) templ 为原始图像search 为搜索匹配图像,它的尺寸必须小于或等于原始图像method 表示匹配方式method一般
1. 什么是单例模式 单例模式是为确保一个类只有一个实例,并为整个系统提供一个全局访问点的一种模式方法。 单例的特点: 在任何情况下,单例类永远只有一个实例存在 单例需要有能力为整个系统提供这一唯一实例 2. 单例模式之懒汉式单例 实现代码: public class MySingleton { p
转载 2020-03-13 09:40:00
172阅读
2评论
假设现在我们面临这样一个问题:有一个文本串S,和一个模式串P,现在要查找P在S中的位置,怎么查找呢?首回溯,j 被置为0。举个例子,如果给定文本串S:“BBC AB
原创 2022-05-26 00:20:37
497阅读
在这一篇文章中,我们将会了解数字图像处理中重要的组成部分之一的模板匹配。一:什么是模板匹配?在OpenCV教程中这样解释模板匹配:模板匹配是一项在一幅图像中寻找与另一幅模板图像最匹配(相似)部分的技术.这里说的模板是我们已知的小图像,模板匹配就是在一副大图像中搜寻目标。模板就是我们已知的在图中要找的目标,且该目标同模板有相同的尺寸、方向和图像,通过一定的算法可以在图中找到目标,确定其坐标位置。二:
模板匹配的作用在图像识别领域作用可大了。那什么是模板匹配?模板匹配,就是在一幅图像中寻找另一幅模板图像最匹配(也就是最相似)的部分的技术。说的有点抽象,下面给个例子说明就很明白了。在上面这幅全明星照中,我们想找出姚明头像的位置,并把它标记出来,可以做到吗?可以,这就是模板匹配的要做的事情。其实模板匹配实现的思想也是很简单很暴力的,就是拿着模板图片(姚明头像)在原图(全明星照)中从左上至右下依次滑动
  • 1
  • 2
  • 3
  • 4
  • 5