感谢Intel提供这一次机会,我能够很幸运的参与进来,并且提高自己的编程技术。
下面我介绍一下我的工作内容。
一.模型介绍
PaddleOCR是一个基于飞桨深度学习框架的OCR(Optical Character Recognition)工具包,可用于文本检测、文本识别、关键字识别等场景。它支持多种语言文字识别,包括中文、英文、日文、韩文等,并且具有较高的识别准确率和较快的识别速度。PaddleO
原创
2023-11-13 19:30:31
787阅读
https://www.intel.com/content/www/us/en/programmable/solutions/acceleration-hub/overview.html
转载
2021-10-25 15:21:34
206阅读
先前利用了一些时间去网上搜索资料,了解Intel的集显,特别是E3800系列的SOC,主要是因为老大安排一个任务,叫我协助另一个公司的同事调查这个SOC上的硬件加速功能,即硬件解码。这个事我很早就开始耳闻了,当时还在搞项目,没空理。趁着项目处于交付阶段有点空余时间就安排我去做。手册上讲得很明白,芯片支持h.264硬件解码。从wiki上也看到集成的GPU可以实现硬解。在一番搜索研究后,终于在ubun
转载
2024-04-23 10:50:09
334阅读
Intel Smart Response Technology 混合硬盘技术 Intel Rapid Storage Technology SERVER:
转载
2017-05-04 19:29:00
260阅读
2评论
目录1 使用OpenCV检测程序效率 2 OpenCV中的默认优化 3 在Ipython中检测效率 4 效率优化技术1 使用OpenCV检测程序效率cv2.getTickCount()函数返回从参考点到这个函数被执行的时钟数。cv2.getTickF
转载
2024-02-16 10:28:27
67阅读
openCV - Open Source Computer Vision Librarylogo图标用的是三原色:BGR 三个核心和常用的模块- core:核心模块,主要包含了OpenCV中最基本的结构(矩阵,点线和形状等),以及相关的基础运算/操作。- imgproc:图像处理模块,包含和图像相关的基础功能(滤波,梯度,改变大小等),以及一些衍生的高级功能(图像分割,直方图,形态分析
转载
2023-12-28 19:09:52
151阅读
python3安装intel的加速库:conda config --add channels intel
conda create --name intelpy intelpython3_full python=3然后在linux下:~/anaconda3/envs/intelpy/bin/conda install --name intelpy keras 是可以安装keras的,但是在我ma
原创
2023-05-31 10:37:13
188阅读
学习
原创
2022-06-11 23:27:08
125阅读
目录前言采样器设备端采样器创建主机端采样器创建图像旋转内核创建主机函数创建完整程序旋转输出结果高斯过滤内核创建主机函数创建完整程序高斯模糊输出结果 前言OpenCL其实算是一种“加速语言”,其由设备上运行的kernel函数语言和控制平台的API组成,它通过将某些简单而又重复的工作转交给GPU/FPGA外接设备,实现异构并行来加速原本的工作。比如在OpenCV中就引入了OCL module,其编译
转载
2024-03-27 13:16:42
141阅读
背景为了降低cpu的使用率提升系统的接入能力,需要将编解码模块移至GPU处理,opencv默认的发行版中不支持GPU加速,所以需要重新编译opencv使其支持GPU硬件加速。读者本文的读者须具备一定的Linux使用经验,如常规软件安装等操作不在本文档中描述。术语cuda:统一计算设备架构(Compute Unified Device Architecture, CUDA),是由NVIDIA推出的通
转载
2024-07-02 19:53:18
204阅读
本人以前编译opencv4.2版本的DNN模块支持CUDA加速成功了,后来时隔一年,编译opencv4.4版本DNN模块使用CUDA加速一直编译失败,那叫个酸爽,如果看到此博客的你也在为编译opencv4.4版本的DNN模块使用CUDA加速而痛苦时,静下心来,按照我提供的思路一步一步走下去,你会成功的。CUDA安装与配置根据自己的GPU选择合适的CUDA版本,我的是GeForce GTX 1080
转载
2024-01-07 17:22:11
137阅读
前言大家都爱用Python,很大程度是因为Python有非常丰富好用的扩展包,比如Numpy、Matplotlib、Pandas等。特别是Numpy,为科学计算提供了基础支撑,使得Python具有类似Matlab一样的科学计算能力。如果用C/C++语言进行算法开发,实际上我们需要的就是一个类似Numpy的线性代数库,最基本的是支持BLAS三级运算(矢量基本计算、矩阵与矢量的基本计算、矩阵的基本计算
转载
2024-02-28 08:52:17
948阅读
最近想要实现GPU加速,在网上找了很多资料,看了各种博文,终于自己成功编译了opencv2413带gpu模块的库。现特此做一个记录:独立显卡为:GTX 750Ti 软件及需要用到的库:cmake3.3.0+vs2013+opencv2413源码+cuda toolkits6.5.14+tbb43_20150611oss 主要步骤为:1、在PCI插
转载
2024-02-27 22:12:41
327阅读
众所周知,Gpu加速技术对图像处理具有很大的影响,在前面的博客中通过对比验证了Gpu加速技术对图像滤波的高效率。但是Gpu技术并不是万能的,本文通过比较发现Gpu计算直方图的效率并没有传统计算方法效率高。下面表格是对比结果,时间是通过运行20次求平均值而得,后面给出相应的比较代码。由结果可以看出Cpu计算直方图是运行效率更高,当对图片数据库进
转载
2024-03-03 10:45:24
286阅读
前言最近刚出的opencv4.4.0也支持了yolov4,便尝试用opencv调用yolov4进行检测,做个记录。当然,yolov3、yolov4-tiny等也能调用,只需修改加载的cfg和weight文件就行。如果想使用GPU加速的话,需要安装opencv的GPU版,可以参考:ubuntu下安装opencv,并配置DNN模块使用CUDA加速下载1、yolov4权重地址:百度网盘 提取码:2zfk
转载
2024-03-07 15:53:49
130阅读
OpenCV Change Logscheck http://opencv.willowgarage.com/wiki/OpenCV%20Change%20LogsOnline reference manual for GPUOnline reference manual for GPU is at http://opencv.willowgarage.com/wik
转载
2023-07-23 20:09:51
283阅读
在本教程中,您将学习如何将 OpenCV 的“dnn”模块与 NVIDIA GPU 结合使用,以将对象检测(YOLO 和 SSD)和实例分割(Mask R-CNN)的速度提高 1,549%。 上周,我们发现了如何配置和安装 OpenCV 及其“深度神经网络”(dnn)模块以使用 NVIDIA
转载
2024-02-03 22:59:36
1176阅读
CV_OCL_RUN OpenCL(全称Open Computing Language,开放运算语言)是第一个面向异构系统通用目的并行编程的开放式、免费标准。 OpenCL由两部分组成,一是用于编写kernels(在OpenCL设备上运行的函数)的语言,二是用于定义并控制平台的API(函数)。 OpenCL提供了基于任务和基于数据两种并行计算机制,它极大地扩展了GPU的应用范围,使之不再局限于图形
转载
2023-12-25 00:41:46
260阅读
很多时候OpenCL启用GPU加速大规模矩阵运算可以达到减少计算时间的目的。但是目前一般成熟代码里面的矩阵运算不会是简单的float数组或者double数组,而是通过特定的结构体进行计算。其中Eigen就是专门针对矩阵计算的库,里面涉及到大量的矩阵操作。那么如何用OpenCL对Eigen进行加速呢?简单来看就是将Eigen的矩阵结构体声明放到OpenCL的核函数中,但是本人技术浅薄,无法实现这一步
转载
2024-01-10 15:57:32
127阅读
0.前言笔者最近参与了并行计算相关的比赛,赛题主要内容就是把一份C源码的程序利用2个节点、每节点64个核进行优化(当然也包括使用其他优化手段,但主要的加速在于多线程/多进程)。新手上路,和队友在OpenMP/MPI折腾了不少时间,现在把一些优化的技巧记录在这里。优化都不是绝对的,具体哪种方式适用于代码,还是要就事论事的吧。1.OpenMP的使用方式OpenMP最容易被想到的使用方式莫过于对循环进行
转载
2024-06-19 09:01:57
227阅读