使用GPU加速要看在什么平台上使用,目前VS中是直接可以将函数指定在GPU上运行,但是要注意使用的场合,并不是什么情况下使用GPU都可以加速,GPU是因为使用了显存,而显存是比内存大很多的,所以可以同时对很多数据进行处理,所以才能提高处理速度,但其实它的计算频率并不比内存上高,所以可以看出GPU能够加速的原理是:大容量并行计算(可能形容得不到位…..)。但是如果只对一个数据进行反复计算,这时候GP
转载 2023-10-17 20:06:00
420阅读
接一篇文章,这一节主要是编译安装opencv4.2+opencv_contrib编译,难点在于编译的过程中会出错各种报错,会有很多坑。按下面的方法应该说成功率还是相当高的。首先是系统选用ubuntu16.04,硬件显卡选用2070,前提是显卡驱动和cuda,cudnn都全部安装好。接着我们往下操作1,更新系统安装必要的包$ sudo apt-get update $ sudo apt-get up
openCV - Open Source Computer Vision Librarylogo图标用的是三原色:BGR 三个核心和常用的模块- core:核心模块,主要包含了OpenCV中最基本的结构(矩阵,点线和形状等),以及相关的基础运算/操作。- imgproc:图像处理模块,包含和图像相关的基础功能(滤波,梯度,改变大小等),以及一些衍生的高级功能(图像分割,直方图,形态分析
目录1 使用OpenCV检测程序效率      2 OpenCV中的默认优化      3 在Ipython中检测效率      4 效率优化技术1 使用OpenCV检测程序效率cv2.getTickCount()函数返回从参考点到这个函数被执行的时钟数。cv2.getTickF
一、提高OpenCV的运算速度,有以下几种方法:1、利用x86转为x提速,可以提高1倍的速度2、多线程的openmp或Intel TBB提速,将cpu的利用率从20%多提高到100%3、利用GPU提速,至少可以提高5~10倍的运算速度二、openmpHome - OpenMPhttps://www.openmp.org/Specifications - OpenMPhttps://www.op
转载 2024-01-09 18:40:35
90阅读
背景为了降低cpu的使用率提升系统的接入能力,需要将编解码模块移至GPU处理,opencv默认的发行版中不支持GPU加速,所以需要重新编译opencv使其支持GPU硬件加速。读者本文的读者须具备一定的Linux使用经验,如常规软件安装等操作不在本文档中描述。术语cuda:统一计算设备架构(Compute Unified Device Architecture, CUDA),是由NVIDIA推出的通
前言大家都爱用Python,很大程度是因为Python有非常丰富好用的扩展包,比如Numpy、Matplotlib、Pandas等。特别是Numpy,为科学计算提供了基础支撑,使得Python具有类似Matlab一样的科学计算能力。如果用C/C++语言进行算法开发,实际上我们需要的就是一个类似Numpy的线性代数库,最基本的是支持BLAS三级运算(矢量基本计算、矩阵与矢量的基本计算、矩阵的基本计算
转载 2024-02-28 08:52:17
948阅读
最近想要实现GPU加速,在网上找了很多资料,看了各种博文,终于自己成功编译了opencv2413带gpu模块的库。现特此做一个记录:独立显卡为:GTX 750Ti      软件及需要用到的库:cmake3.3.0+vs2013+opencv2413源码+cuda toolkits6.5.14+tbb43_20150611oss  主要步骤为:1、在PCI插
转载 2024-02-27 22:12:41
327阅读
本人以前编译opencv4.2版本的DNN模块支持CUDA加速成功了,后来时隔一年,编译opencv4.4版本DNN模块使用CUDA加速一直编译失败,那叫个酸爽,如果看到此博客的你也在为编译opencv4.4版本的DNN模块使用CUDA加速而痛苦时,静下心来,按照我提供的思路一步一步走下去,你会成功的。CUDA安装与配置根据自己的GPU选择合适的CUDA版本,我的是GeForce GTX 1080
转载 2024-01-07 17:22:11
137阅读
目录前言采样器设备端采样器创建主机端采样器创建图像旋转内核创建主机函数创建完整程序旋转输出结果高斯过滤内核创建主机函数创建完整程序高斯模糊输出结果 前言OpenCL其实算是一种“加速语言”,其由设备上运行的kernel函数语言和控制平台的API组成,它通过将某些简单而又重复的工作转交给GPU/FPGA外接设备,实现异构并行来加速原本的工作。比如在OpenCV中就引入了OCL module,其编译
1.使用OpenCV测量性能1.1常用函数:retval=cv.getTickCount()retval=cv.getTickFrequency()1.2固定写法:# use getTickCount() to get time e1 = cv.getTickCount() #    CODE e2 = cv.getTickCount() time = (e2 - e1)/cv.getTickFr
转载 2023-09-13 11:16:22
430阅读
1 异构计算、GPGPU与OpenCL  OpenCL是当前一个通用的由很多公司和组织共同发起的多CPU\GPU\其他芯片 异构计算(heterogeneous)的标准,它是跨平台的。旨在充分利用GPU强大的并行计算能力以及与CPU的协同工作,更高效的利用硬件高效的完成大规模的(尤其是并行度高的)计算。在过去利用GPU对图像渲染进行加速的技术非常成熟,但是我们知道GPU的芯片结构擅长大规
引言OpenVINO是Intel推出的针对自家硬件(酷睿系列6代以上CPU,至强系列部分CPU,部分图形显卡以及FPGA、VPU、神经计算棒等硬件,详情点此处)进行神经网络模型推理加速的开发库,可使用Python和C++进行编程开发。主要可以从两个方式进行开发: 1.直接利用OpenVINO导入模型进行推理加速。 2.利用OpenCV导入训练好的模型,设置好推理后端以及推理硬件,即可实现推理加速
转载 2023-11-14 23:28:18
135阅读
注:本来一开始用的346版本,结果出问题;换成了3.4.16一、显卡加速环境准备默认安装的英伟达显卡驱动是没有配置显卡加速的。要在程序中可以使用显卡加速需要先配置环境需要准备:1.显卡 rtx 2060(如何查看显卡是否支持硬件加速并选择合适的软件版本)2.英伟达CUDA Toolkit: cuda_11.1.1_456.81_win10.exe3.CUDNN:cudnn-windows-x86_
转载 2024-04-23 19:10:26
36阅读
网上教程挺多的的,我也是参考网上教程编译成功的,现在把我编译的过程发出来。 目的:使用opencv中的cuda加速函数。例如:frame1_gray = cv.cuda_GpuMat(image1) frame2_gray = cv.cuda_GpuMat(image2) opticalFlowGPU = cv.cuda_FarnebackOpticalFlow.create(3,0.5,Fals
转载 2024-02-10 07:39:18
329阅读
OpenCV4 + CUDA 从配置到代码.....引子一直有人在研习社问我,怎么去做OpenCV + CUDA的加速支持。其实网上用搜索引擎就可以找到一堆文章,但是其实你会发现,按照他们的做法基本都不会成功,原因是因为文章中使用的OpenCV版本太老旧、英伟达GPU的CUDA库也太久远。其实这个都不是主要原因,真实原因是OpenCV4跟之前的版本,编译CUDA的方法不一样了。所以感觉有
转载 2024-02-21 14:11:51
111阅读
OpenCV Change Logscheck http://opencv.willowgarage.com/wiki/OpenCV%20Change%20LogsOnline reference manual for GPUOnline reference manual for GPU is at http://opencv.willowgarage.com/wik
转载 2023-07-23 20:09:51
283阅读
        众所周知,Gpu加速技术对图像处理具有很大的影响,在前面的博客中通过对比验证了Gpu加速技术对图像滤波的高效率。但是Gpu技术并不是万能的,本文通过比较发现Gpu计算直方图的效率并没有传统计算方法效率高。下面表格是对比结果,时间是通过运行20次求平均值而得,后面给出相应的比较代码。由结果可以看出Cpu计算直方图是运行效率更高,当对图片数据库进
前言最近刚出的opencv4.4.0也支持了yolov4,便尝试用opencv调用yolov4进行检测,做个记录。当然,yolov3、yolov4-tiny等也能调用,只需修改加载的cfg和weight文件就行。如果想使用GPU加速的话,需要安装opencv的GPU版,可以参考:ubuntu下安装opencv,并配置DNN模块使用CUDA加速下载1、yolov4权重地址:百度网盘 提取码:2zfk
转载 2024-03-07 15:53:49
130阅读
CV_OCL_RUN OpenCL(全称Open Computing Language,开放运算语言)是第一个面向异构系统通用目的并行编程的开放式、免费标准。 OpenCL由两部分组成,一是用于编写kernels(在OpenCL设备上运行的函数)的语言,二是用于定义并控制平台的API(函数)。 OpenCL提供了基于任务和基于数据两种并行计算机制,它极大地扩展了GPU的应用范围,使之不再局限于图形
转载 2023-12-25 00:41:46
260阅读
  • 1
  • 2
  • 3
  • 4
  • 5