在计算机视觉任务中,尤其是使用 PyTorch 和 OpenCV 进行目标检测时,非极大值抑制(NMS)是一个至关重要的步骤。然而,随着数据集规模的增大和检测任务复杂性的提升,NMS 的速度成为一个主要的瓶颈。本文将详细探讨在 PyTorch 和 OpenCV 中优化 NMS 速度的过程,包括背景定位、演进历程、架构设计、性能攻坚、故障复盘以及复盘总结。
## 背景定位
随着计算机视觉技术的快
翻译自 Contour in OpenCVContoursContours 可以简单的理解为一条连通连续点的曲线(沿着边缘),有同样的颜色或者强度。在进行形状分析,目标检测和识别时很有用处。为了更好了精度,使用二值化的图像。在寻找轮廓之前,先对图像应用二值化阈值或者canny 边缘检测等技术。在OpenCV中,寻找轮廓是:在黑色背景上寻找白色物体,所以一定记住,被检测的对象应该是白色的,背景是黑色
前言 本文介绍了NMS的应用场合、基本原理、多类别NMS方法和实践代码、NMS的缺陷和改进思路、介绍了改进NMS的几种常用方法、提供了其它不常用的方法的链接。本文很早以前发过,有个读者评论说没有介绍多类别NMS让他不满意,因此特来补充。顺便补充了NMS的缺点和改进思路。Non-Maximum Suppression(NMS)非极大值抑制。从字面意思理解,抑制那些非极大值的元素
转载
2022-10-07 16:41:21
541阅读
import numpy as npimport cv2 as cvfrom matplotlib import pyplot as plt# 1.读取图像img = cv.imread("./1.jpg")# 2.Fast角点检测# 2.1创
原创
2022-06-01 17:41:44
937阅读
文章目录1 图像的特征(角点特征)2 角点检测(旋转不变性)2.1 Harris角点检测2.1.1 思想2.1.2 原理2.1.3 代码实现2.1.4 优缺点2.2 Shi-Tomasi角点检测2.2.1 原理2.2.2 实现3 角点检测(尺度不变性)3.1 SIFT角点检测3.1.1 算法原理3.1.2 基本流程3.1.2.1 尺度空间极值检测3.1.3 代码实现3.2 SURF角点检测3.2
转载
2024-10-18 21:24:02
97阅读
nms c++实现
转载
2018-09-19 18:21:00
141阅读
2评论
Harris角点检测如果某一点在任意方向的一个微小变动都会引起灰度很大的变化,那么我们就把它称之为角点。 角点作为图像上的特征点,包含有重要的信息,在图像融合和目标跟踪及三维重建中有重要的应用价值。它们在图像中可以轻易地定位,同时,在人造物体场景,比如门、窗、桌等处也随处可见。因为角点位于两条边缘的交点处,代表了两个边缘变化的方向上的点,所以它们是可以精确定位的二维特征,甚至可以达到亚像素的精度。
转载
2024-03-27 15:50:22
113阅读
Opencv学习之角点检测角点检测在图像处理和计算机视觉领域,兴趣点(interest points),也被称作关键点(key points)、特征点(feture points)。它被大量用于解决物体识别、图像识别、图像匹配、视觉跟踪、三维重建等一系列的问题,如果能检测到足够多特殊的点,同时它们的区分度很高,并且可以精确定位稳定的特征,那么这个方法就具有使用价值。 图像特征类型被分为以下三种:
转载
2024-03-22 13:58:07
60阅读
1. Network Management System,意思是网络管理系统,简称网管。告警,性能,配置,安全,计费是网管的五大功能。 2. Novels management System,意思是小说管理系统,归属于CMS(网站内容管理系统)范畴中,主要是用于小说类网站专用。目前有杰奇小说管理系统(当前已改名 JieQiCMS)、文奇小说管理系统(当前已改名wanerCMS)、终点小说管理...
转载
2010-11-26 23:54:00
200阅读
2评论
前言给出一张图片和上面许多物体检测的候选框(即每个框可能都代表某种物体),但是这些框很可能有互相重叠的部分,我们要做的就是只保留最优的框。假设有N个框,每个框被分类器计算得到的分数为Si, 1<=i<=N。(1)建造一个存放待处理候选框的集合H,初始化为包含全部N个框;建造一个存放最优框的集合M,初始化为空集。 (2)将所有集合 H 中的框进行排序,选出分数最高的框 m,从集合 H 移
转载
2024-06-01 16:43:13
165阅读
NMS即non maximum suppression即非极大抑制,顾名思义就是抑制不是极大值的元素,搜索局部的极大值。在最近几年常见的物体检测算法(包括rcnn、sppnet、fast-rcnn、faster-rcnn等)中,最终都会从一张图片中找出很多个可能是物体的矩形框,然后为每个矩形框为做类别分类概率。 就像上面的图片一样,定位一个车辆,最后算法就找出了一堆的方框,我
转载
2023-08-14 22:14:46
257阅读
在物体检测的过程中,模型会生成大量的候选框,通过NMS(Non-Maximum Suppression,非极大值抑制)可以筛选出最优的候选框,原理非常直观,简单来说就是选出所有的局部最大值. 最大值容易找,主要就是如何定义局部,通过IoU就OK啦~ NMS执行流程假定最终选取的候选框集合为res,开始时res是空集; 假定模型输出的大量候选框集合为A,A中的各个候选框有对应的得分首先从A中选出分数
转载
2024-05-14 20:39:03
55阅读
算法原理最近在做图像识别工作,发现常常会遇到在某一点出框出多个特征图,影响图像处理的工作,如下图所示,一个部分出现多个特征框。因此有必要去研究nms算法。在进行图像识别成功时,我们得到的数据是包含一组坐标点和他的得分值。算法原理:根据得分值进行一个降序排序选取得分值最大的入栈,用该得分值计算与其他数据的iou值,如果得到的iou值大于指定的阈值,那么说明该框与选定的相似,可以舍去。如果得到的iou
转载
2023-12-20 15:33:22
167阅读
简介目标检测在使用了基于深度学习的端到端模型后效果斐然。目前,常用的目标检测算法,无论是One-stage的SSD系列算法、YOLO系列算法还是Two-stage的基于RCNN系列的算法,非极大值抑制都是其中必不可少的一个组件。在现有的基于anchor的目标检测算法中,都会产生数量巨大的候选矩形框,这些矩形框有很多是指向同一目标,因此就存在大量冗余的候选矩形框。非极大值抑制算法的目的正在于此,它可
转载
2024-01-08 14:18:30
150阅读
static const struct kgsl_ioctl kgsl_ioctl_funcs[] = {
...
// ioctl命令:IOCTL_KGSL_GPUMEM_ALLOC
// ioctl函数:kgsl_ioctl_gpumem_alloc
KGSL_IOCTL_FUNC(IOCTL_KGSL_GPUMEM_ALLOC,
kgsl_ioctl_gpum
解决的问题:就是两个框iou有一定重叠且两个框的得分都很高(同时两个框确实包含了我们想要的检测结果),这样有一个框会被nms过滤掉解决的方法:之前的nms是直接把低分框过滤掉(或者按照论文说的把低分框的score置为0),现在是把低分框的得分降低,具体有两种降低方式 在lib/nms/cpu_nms.pyx值得注意的是:iou的阈值是0.3,不是0.5,论文里面说好像是做实验对比的几个检测器也是用
转载
2018-07-03 11:13:00
163阅读
2评论
# 学习 Python NMS 算法
在计算机视觉领域,非极大值抑制(Non-Maximum Suppression,简称 NMS)是一种常用的后处理步骤,用于去除检测框中的重叠部分。本文将引导您逐步实现 Python 中的 NMS 算法。
## 1. 整体流程
首先,我们来了解实现 NMS 的整体流程。以下是关键步骤的总结:
| 步骤编号 | 步骤名称 | 描
# Python实现非极大值抑制 (NMS)
非极大值抑制(Non-Maximum Suppression, NMS)是一种常用于计算机视觉中的后处理技术,尤其是在目标检测中。NMS的主要目的是消除冗余的重叠检测框,只保留最佳的框。本文将说明NMS的基本原理,并提供一个Python代码示例。
## NMS的基本原理
在目标检测中,模型通常会生成多个检测框,并为每个框分配一个置信度分值。NMS
原创
2024-09-29 04:06:49
197阅读
编程面试python相关知识Python dict和set的底层原理python的迭代器了解么python的深浅拷贝python多线程、多进程相关多线程、协程Python锁python装饰器使用(web相关)python可变对象问题python内存管理,垃圾回收原理Python Map使用Python reduce使用python Filter使用python函数式编程面向对象、继承下划线的使用
今天学习角点检测的一个Fast算法,顾名思义,很快!FAST 算法1: 在图像中选择一个像素点角点,N一般是12,记住哈,是
原创
2022-12-14 16:24:35
199阅读