翻译自 Contour in OpenCVContoursContours 可以简单的理解为一条连通连续点的曲线(沿着边缘),有同样的颜色或者强度。在进行形状分析,目标检测和识别时很有用处。为了更好了精度,使用二值化的图像。在寻找轮廓之前,先对图像应用二值化阈值或者canny 边缘检测等技术。在OpenCV中,寻找轮廓是:在黑色背景上寻找白色物体,所以一定记住,被检测的对象应该是白色的,背景是黑色
 简介        在局部特征点检测快速发展的时候,人们对于特征的认识也越来越深入,近几年来许多学者提出了许许多多的特征检测算法及其改进算法,在众多的特征提取算法中,不乏涌现出佼佼者。SIFT、SUSAN、GLOH、SURF算法,可以说特征提取算法层出不穷。各种改进算法PCA-SIFT、ICA-SIFT、P-ASURF、R-ASURF、Radon
转载 2024-02-04 22:21:18
41阅读
# 使用 Python 实现快速检测与匹配 在许多实际应用中,我们需要将两个数据集进行比较,以确定它们之间的相似性和相关性。Python 提供了多种库来帮助我们实现这一点。本文将带您一步步实现“快速检测与匹配”这一功能。 ## 整体流程 以下是实现检测与匹配功能的基本步骤: | 步骤 | 描述 | | ---- | ------------
原创 2024-08-21 04:19:09
73阅读
import numpy as npimport cv2 as cvfrom matplotlib import pyplot as plt# 1.读取图像img = cv.imread("./1.jpg")# 2.Fast角点检测# 2.1创
原创 2022-06-01 17:41:44
937阅读
文章目录1 图像的特征(角点特征)2 角点检测(旋转不变性)2.1 Harris角点检测2.1.1 思想2.1.2 原理2.1.3 代码实现2.1.4 优缺点2.2 Shi-Tomasi角点检测2.2.1 原理2.2.2 实现3 角点检测(尺度不变性)3.1 SIFT角点检测3.1.1 算法原理3.1.2 基本流程3.1.2.1 尺度空间极值检测3.1.3 代码实现3.2 SURF角点检测3.2
目标在本章中,将学习:如何将一个图像中的特征与其他图像进行匹配OpenCV中使用Brute-Force匹配器和FLANN匹配器Brute-Force匹配器的基础暴力匹配器很简单。它使用第一组中一个特征的描述符,并使用一些距离计算将其与第二组中的所有其他特征匹配。并返回最接近的一个。 对于BF匹配器,首先必须使cv.BFMatcher() 创建BFMatcher对象。 它需要两个可选参数:第一个参
转载 2024-04-07 21:53:11
71阅读
Harris角点检测如果某一点在任意方向的一个微小变动都会引起灰度很大的变化,那么我们就把它称之为角点。 角点作为图像上的特征点,包含有重要的信息,在图像融合和目标跟踪及三维重建中有重要的应用价值。它们在图像中可以轻易地定位,同时,在人造物体场景,比如门、窗、桌等处也随处可见。因为角点位于两条边缘的交点处,代表了两个边缘变化的方向上的点,所以它们是可以精确定位的二维特征,甚至可以达到亚像素的精度。
转载 2024-03-27 15:50:22
113阅读
Opencv学习之角点检测角点检测在图像处理和计算机视觉领域,兴趣点(interest points),也被称作关键点(key points)、特征点(feture points)。它被大量用于解决物体识别、图像识别、图像匹配、视觉跟踪、三维重建等一系列的问题,如果能检测到足够多特殊的点,同时它们的区分度很高,并且可以精确定位稳定的特征,那么这个方法就具有使用价值。 图像特征类型被分为以下三种:
转载 2024-03-22 13:58:07
60阅读
模板匹配是指在图像A中寻找与图像B最相似的部分,一般A称为输入图像,B称为模板图像模板匹配函数result = cv2.matchTemplate(image , temp1 , method , [,mask])result 函数每次计算模板和输入图像的重叠区域相似度之后将结果存入映射图像result中,result图像中每个点都代表一次相似度的比较,类型是单通道32位浮点型  若输入图像的尺寸
1 模板匹配1.1 原理所谓的模板匹配,就是在给定的图片中查找和模板最相似的区域,该算法的输入包括模板和图片,整个任务的思路就是按照滑窗的思路不断的移动模板图片,计算其与图像中对应区域的匹配度,最终将匹配度最高的区域选择为最终的结果。实现流程:准备两幅图像:1.原图像(I):在这幅图中,找到与模板相匹配的区域2.模板(T):与原图像进行比对的图像块滑动模板图像和原图像进行比对:将模板块每次移动一个
1.在原图上裁剪一块作为模板图像,如果图像不是裁剪的, 大小有变化的话,会影响匹配结果。   2.运行代码/* 简单图像模板匹配 */ #include <opencv2/imgproc/imgproc.hpp> #include <opencv2/highgui/highgui.hpp> #include <iostream>
##仅记录工程中的工作  opencv中提供了多种双目视觉匹配的算法实现,比如BM,SGBM,HH,VAR等,这些算法实现在calib3d文件中,并在opencv提供的 sample文件中有具体的例子,具体的算法实现和例子可以查看opencv库,这里不对算法的实现原理做解析。以下只说明各个算法接口和参数的意义。opencv中使用setParamName和getParamName来设置和获
OpenCV Java:强大的计算机视觉库在Java中的应用,是将OpenCV与Java语言相结合的实践,为Java开发者提供了便利的接口和示例代码,使得在Java平台上进行视觉计算变得更加容易。项目简介lichao3140/Opencv_Java 是一个专门针对Java开发者的OpenCV集成项目,旨在简化Java环境下的计算机视觉编程。该项目不仅封装了OpenCV的核心API,还提供了丰富的示
目录一、基础理论1、思想2、大致过程二、详细过程1、首先需要模板库2、得到模板3、原图限定大小4、模板匹配5、匹配所有子文件夹,保存最佳得分(最匹配项)三、大致过程(细分类,节省时间)1、汉字匹配 2、英文字符匹配3、数字/英文匹配 4、显示模板匹配总代码参考资料一、基础理论1、思想把提取到的每一张字符,和模板库中的所有字符进行对比。2、大致过程先拿到模板库,把模板和待匹配的图
函数createTrackbar( trackbar_label, image_window, &match_method, max_Trackbar, MatchingMethod ); /*参数1:滑动条轨迹名 参数2:滑动条依附的窗口名 参数3:滑块的位置,创建时,滑块初始位置就是这个变量当前的值 参数4:轨迹的最大值 参数5:回调函数 参数6:默认0,用户传给回调函数的数据,如果第
转载 2024-04-14 12:09:43
45阅读
一:课程介绍1.1:学习目标  学会用imread载入图像,和imshow输出图像。createTrackbar加入滚动条和其回调函数的写法。matchTemplate并学会通过该函数实现模板匹配。     学会怎样将一副图片中自己感兴趣的区域标记出来1.2:什么是模板匹配?  在一副图像中寻找和另一幅图像最相似(匹配)部分的技术。1.3:案例展示  输入有
基础介绍模板匹配是指在当前图像A里寻找与图像B最相似的部分,本文中将图像A称为模板图像,将图像B称为搜索匹配图像。引言:一般在Opencv里实现此种功能非常方便:直接调用 result = cv2.matchTemplate(templ, search, method) templ 为原始图像search 为搜索匹配图像,它的尺寸必须小于或等于原始图像method 表示匹配方式method一般
内容来自OpenCV-Python Tutorials 自己翻译整理目标: 学习匹配一副图片和其他图片的特征。 学习使用OpenCV中的Brute-Force匹配和FLANN匹配。暴力匹配(Brute-Force)基础暴力匹配很简单。首先在模板特征点描述符的集合当中找到第一个特征点,然后匹配目标图片的特征点描述符集合当中的所有特征点,匹配方式使用“距离”来衡量,返回“距离”最近的那个。对于Br
使用opencv自带的模板匹配1、目标匹配函数:cv2.matchTemplate() res=cv2.matchTemplate(image, templ, method, result=None, mask=None) image:待搜索图像 templ:模板图像 result:匹配结果 method:计算匹配程度的方法,主要有以下几种: CV_TM_SQDIFF   &n
文后代码,优化效果图结尾处,最快3ms得到匹配结果 NCC,全称为Normalized Cross Correlation,即归一化互相关系数, 在模板匹配中使用的非常非常广泛,也是众多模板匹配方法中非常耀眼的存在, 这个匹配的理论核心基础公式如下: 其实Opencv的matchTemplate函数使用的就是这个公式,实测直接使用这个公式实现无旋转角度的、单目标的模板匹配时用时大概26ms(其实这
  • 1
  • 2
  • 3
  • 4
  • 5