demo展示这是一个剪刀石头布预测模型,会根据最近20局的历史数据训练模型,神经网络输入为最近2局的历史数据。如何拥有较为平滑的移植体验?保持两种语言,和两个框架的API文档处于打开状态,并随时查阅:Python,JavaScript;Pytorch,TensorFlow JS(用浏览器 F3 搜索关键词)。可选阅读,《动手学深度学习》,掌握解决常见学习问题时,Pytorch 和 TensorFl
转载
2023-08-27 00:29:52
0阅读
前言Numpy是一个开源的Python科学计算库,它是python科学计算库的基础库,许多其他著名的科学计算库如Pandas,Scikit-learn等都要用到Numpy库的一些功能。本文主要内容如下:Numpy数组对象创建ndarray数组Numpy的数值类型ndarray数组的属性ndarray数组的切片和索引处理数组形状数组的类型转换numpy常用统计函数数组的广播1 Numpy数组对象Nu
转载
2024-09-25 12:33:26
77阅读
在安全模式下删除以下病毒文件.
1.exe 2.exe 3.exe 4.exe病毒,在C:\Documents and Settings\用户名\Local Settings\Temp文件夹里C:\Program Files\Microsoft 文件svhost32.exeC:\WINDOWS\command 文件rundll32.exec:\windows\qq.exe服务windows&nbs
转载
精选
2008-02-13 15:43:14
3014阅读
用ndarray进行存储: import numpy as np # 创建ndarray score = np.array( [[80, 89, 86, 67, 79], [78, 97, 89, 67, 81], [90, 94, 78, 67, 74], [91, 91, 90, 67, 69] ...
转载
2021-07-28 15:28:00
355阅读
2评论
## 常规创建方法a = np.array([2,3,4])b = np.array([2.0,3.0,4.0])c = np.array([[1.0,2.0],[3.0,4.0]])d = np.array([[1,2],[3,4]],dtype=complex) # 指定数据类型print a, a.dtypeprint b, b.dtypeprint c, c.dtypeprint d, d
原创
2023-02-25 15:13:20
183阅读
一 简介 Numpy是高性能科学计算和数据分析的基础包。它也是pandas等其他数据分析的工具的基础,基本所有的数据分析的包都用过它。Numpy为python带来了真正的多维数组功能,并且提供了丰富的函数库处理这些数组。它将常用的数学函数都支持向量化运算,使得这些数学函数能够直接对数组进行操作,将本
原创
2021-07-30 13:36:53
441阅读
之前学的: # -*- coding: utf-8 -*- """ Created on Fri May 29 11:51:15 2020 @author: Administrator """ import numpy as np import random t1=np.array([2,3,4,5
原创
2022-06-16 09:45:49
119阅读
NumPy模块;原生数组,创建数组;随机数数组:设定取值范围,设定输出格式和精度;操作数组:多维数组的切片和访问,数组属性,操作(变形、排序、拼接、统计、转置、反转、旋转)
原创
2019-02-25 11:01:39
897阅读
NumPy基本操作,参考《Numerical Python: Scientific Computing and Data Science Applications with NumPy, SciPy and matploatlib》 ——Second Edition, Robert Johansso... ...
转载
2021-07-29 12:48:00
289阅读
2评论
Numpy提供多维数组对象(以存储同构或者异构<即结构数组>数据)以及操作这些对象的优化函数/方法。
原创
2022-08-16 15:21:01
355阅读
①创建数组import numpya = numpy.array([[1,2,3,5,6,7,8],
原创
2022-11-18 19:02:06
73阅读
NumPy广泛用于科学计算,提供了ndarray(n-dimension array, n维数组)对象以及作用于ndarray上的一系列操作。通常按如下方式导入NumPy: import numpy as np 1. 创建ndarray ndarray有多种创建方式。可以直接通过Python的列表创 ...
转载
2021-09-05 00:37:00
193阅读
2评论
Numpy
一、Numpy优势
1.Numpy介绍
2.ndarray介绍
3.ndarray与Python原生list运算效率对比
4.ndarray的优势
5.小结
二、N维数组-ndarray
1.ndarray的属性
2.ndarray的形状
3.ndarray的类型
4.总结
三、基本操作
1.生成数组的方法
2.数组的索引、切片
3.形状修改
4.类型修改
原创
2021-08-13 23:34:15
825阅读
Numpy 1.创建ndarray ndarray指的是n维数组 array01 = numpy.array(object, dtype = None, copy = True, order = None, subok = False, ndmin = 0) # ndmin最小维度 a = np.a ...
转载
2021-07-27 10:36:00
279阅读
2评论
numpy 为什么numpy运算比纯Python要块 属性 数组维数,一维是1,二维是2... 数组中的元素 数量,总的数据量 二维矩阵5行8列数量为40 一个数组元素的 空间大小(字节) ndarray的类型 创建数组的时候指定类型 若不指定,整数默认int64,小数默认float64 字符串 n
转载
2019-09-08 09:20:00
276阅读
2评论
本篇文章目录一、简介二、安装三、数组的创建3.1 array创建3.2 arange创建3.3 随机数创建数组3.3.1 创建随机小数3.3.2 创建随机整数3.3.3 创建标准正态分布数组3.3.4 创建指定期望与方差的正态分布数组四、ndarray对象的属性五、其他形式创建数组5.1 zeros ...
转载
2021-10-14 10:31:00
192阅读
2评论
random numpy.random.rand(3,2) 内存操作 numpy.getbuffer() numpy.frombuffer() list to npy numpy.fromiter(llb,np.int)
原创
2022-05-19 21:12:42
212阅读
数据分析之numpy数组的形状In[01]:import numpy as npIn[02]: t1 = np.arange
原创
2022-12-21 11:37:33
101阅读
NumPy 切片和索引 ndarray对象的内容可以通过索引或切片来访问和修改,与 Python 中 list 的切片操作一样。 ndarray 数组可以基于 0 - n 的下标进行索引,切片对象可以通过内置的 slice 函数,并设置 start, stop 及 step 参数进行,从原数组中切割 ...
转载
2021-08-05 19:45:00
376阅读
2评论
1、创建一个长度为10的一维全为0的ndarray对象,然后让第5个元素等于1import numpy as npndarry =np.zeros 0., 1., 0., 0., 0., 0.,...
原创
2022-07-04 20:36:45
2093阅读