DIP第三章作业鉴于LoG算法在历史中的地位,进行较深入的实验研究。探讨不同σ对LoG算法的影响。图像Chapter3_1.pgm计算公式(*表卷积)见(1) 1)取σ =1.2然后求零交叉的结果2)取σ =2.8的然后求零交叉的结果3)讨论和结论:零交叉对σ的依赖性软件平台Python3.6 + OpenCV4.4.0LoG原理LoG边缘检测算子是David Court
转载 2024-07-31 17:22:08
68阅读
在图像中,边缘可以看做是位于一阶导数较大的像素处,因此,我们可以求图像的一阶导数来确定图像的边缘,像sobel算子等一系列算子都是基于这个思想的。但是这存在几个问题:1. 噪声的影响,在噪声点处一阶导数也会取极大值   2. 求解极大值的复杂性 所以,有了使用二阶导数的方法。这里主要考虑LoG算子,即高斯-拉普拉斯算子。为什么要使用二阶导数呢? 这里要考虑上
在图像中,边缘可以看做是位于一阶导数较大的像素处,因此,我们可以求图像的
转载 2022-01-13 10:39:30
3023阅读
边缘检测1、Sobel2、Laplace3、Roberts4、CannyMarr-Hildreth简单来说,就是先对图像进行(1)高斯滤波,再进行拉普拉斯变换,(2)由于拉普拉斯变换是二阶偏导,边缘点对应的一阶偏导为局部极值,那么其二阶偏导则为0点,(3)所以最后一步为0点检测下面给出拉普拉斯算子:高斯核模版如下:而这里的算法就是,经过研究, Marr 和Hildreth发现,可以将这两
转载 2024-05-07 12:50:03
118阅读
图象边缘检测中边界闭合性的分析与探讨 摘   要 在图象边缘检测中往往要求所检测到的边缘具有封闭特性,本文详细地分析了目前常用的两种算法:哈夫变换和Canny边缘检测算法,最后,探讨边缘算子应满足的准则。 关键词 边缘检测;闭合性;哈夫变换;Canny算子   1引言      
最近在优化一个Python项目,里面包含很多set,list,dict等操作,代码行数2000多行,每次运行耗时都在30-50ms,本以为是Python语言的动态解析特性导致运行性能太低,便尝试使用JIT工具进行优化,折腾一番之后,性能只提升20%,远没有官方介绍的6倍之多,反复查看代码,想到了IO耗时的问题,而是怀疑log输出到控制台耗时是否是罪魁祸首,实验下来发现的确如此。实验内容:分别对比,
转载 2024-05-14 15:45:45
39阅读
利用图像强度二阶导数的零交叉点来求边缘点的算法对噪声十分敏感,所以在边缘增强前滤除噪声。为此,马尔(Marr)和希尔得勒斯(Hildreth)根据人类视觉特性提出了一种边缘检测的方法,该方法将高斯滤波和拉普拉斯检测算子结合在一起进行边缘检测的方法,故称为Log(Laplacianof Gassian )算法。也称之为拉普拉斯高斯算法。该算法的主要思路和步骤如下:
原创 2014-03-19 21:39:00
865阅读
一、算子推导过程1.1 梯度和Roberts算子:1.2 Prewitt:1.3 Sobel算子1.4 Lapacian算子行卷积。 ...
原创 2018-08-03 11:48:58
1172阅读
收入囊中 拉普拉斯算子LOG算子(高斯拉普拉斯算子)OpenCV Laplacian函数构建自己的拉普拉斯算子利用拉普拉斯算子进行图像的锐化 葵花宝典 在OpenCV2马拉松第14圈——边缘检測(Sobel,prewitt,roberts) 我们已经认识了3个一阶差分算子 拉普拉斯算子是二阶差分算子
转载 2017-04-29 10:48:00
138阅读
2评论
sobel算子参数ksize:sobel核的大小,为-1时会使用scharr算子运算直接将参数ddepth的值设置为-1,在计算时得到的结果可能是错误的。 在实际操作中,计算梯度值可能会出现负数。如果处理的图像是8位图类型,则在ddepth的参数值为-1时,意味着指定运算结果也是8位图类型,那么所有负数会自动截断为0,发生信息丢失。为了避免信息丢失,在计算时要先使用更高的数据类型 cv2.CV_64F,再通过取绝对值将其映射为cv2.CV_8U(8位图)类型。所以,通常要将函数cv2.Sobel()内参
原创 2023-02-24 17:17:33
529阅读
本文为Pyspark代码Spark版本:Spark-3.2.11. RDD的定义Spark提供了一种对数据的核心抽象,称为弹性分布式数据集(Resilient Distributed Dataset, RDD)。这个数据集的全部或部分可以缓存在内存中,并且可以在多次计算时重用。RDD其实就是一个分布在多个节点上的数据集合(一个数据集存储在不同的节点上,每个节点存储数据集的一部分)。RDD的主要特征
转载 2023-08-11 18:02:10
96阅读
目录方法对比公式对比优点对比缺点对比常用场景对比边缘检测结果对比方法对比算子:基于一阶导数的方法 算子:基于一阶导数的方法 算子:基于一阶导数的方法 算子:基于二阶导数的方法 算子:非微分边缘检测算子
原创 2021-12-28 15:36:01
8105阅读
1点赞
1评论
今天的主题高斯拉普拉斯 (LoG) 滤波算子用于寻找边缘也有助于寻找斑点!使用高斯差分 (DoG) 来近似回忆:一阶导数滤波器输入图像灰度的急剧变化
翻译 2021-12-14 16:02:47
2551阅读
一、算子概述什么是算子 从狭义上来说是指一个函数空间到另一个函数空间(或它自身)的映射,广义上来说是指一个空间到另一个空间的映射。通俗点来说就是指事物(数据或函数)从一个状态到另一个状态过程的抽象 实质就是映射,就是关系,就是变换。算子的重要作用 1、算子越少灵活性就越低,则实现相同功能的编程复杂度越高,算子越多反之 2、算子越少,表现力越差,面对复杂场景则易用性较差,算子越多的则反之MapRre
转载 2023-08-21 11:02:00
92阅读
1、combineByKey 。作为spark 的核心算子之一,有必要详细了解。reduceByKey 和groupByKey 等健值对算子底层都实现该算子。(1.6.0版更新为combineByKeyWithClassTag)combineByKey 源码定义:def combineByKey[C](createCombiner: (V) => C, mergeValue: (C, V)
转载 2024-06-29 21:51:50
50阅读
1.并行处理机制DataParallel系统通过将整个小型批处理加载到主线程上,然后将子小型批处理分散到整个GPU网络中来工作。具体是将输入一个 batch 的数据均分成多份,分别送到对应的 GPU 进行计算。与 Module 相关的所有数据也都会以浅复制的方式复制多份。每个 GPU 在单独的线程上将针对各自的输入数据独立并行地进行 forward 计算。然后在主GPU上收集网络输出,并通过将网络
一. SURF基本原理SURF是SIFT的加速版,它善于处理具有模糊和旋转的图像,但是不善于处理视角变化和光照变化。在SIFT中使用DoG对LoG进行近似,而在SURF中使用盒子滤波器对LoG进行近似,这样就可以使用积分图像了(计算图像中某个窗口内所有像素和时,计算量的大小与窗口大小无关)。总之,SURF最大的特点在于采用了Haar特征以及积分图像的概念,大大加快了程序的运行效率。二. 
转载 2024-05-10 17:30:29
98阅读
Spark常用算子分析与应用1、算子概述什么是算子 英文翻译为:Operator(简称op)狭义:指从一个函数空间到另一个函数空间(或它自身)的映射。广义:指从一个空间到另一个空间的映射通俗理解:指事物(数据或函数)从一个状态到另外一个状态的过程抽象。实质就是映射,就是关系,就是变换。算子的重要作用 算子越少,灵活性越低,则实现相同功能的编程复杂度越高,算子越多则反之。 老手
转载 2023-12-25 13:01:08
92阅读
摘要:本文介绍什么是算子算子有哪些基本特征。作者: 昇腾CANN 。什么是算子深度学习算法由一个个计算单元组成,我们称这些计算单元为算子(Operator,简称OP)。在网络模型中,算子对应层中的计算逻辑,例如:卷积层(Convolution Layer)是一个算子;全连接层(Fully-connected Layer, FC layer)中的权值求和过程,是一个算子。再例如:tanh、ReLU
转载 2024-08-10 19:02:41
358阅读
RDD算子的分类RDD算子从对数据操作上讲,大致分为两类: 转换(transformations)和行动(action)转换算子: 将一个RDD转换为另一个RDD,这种变换并不触发提交作业,完成作业中间过程处理行动算子:将一个RDD进行求值或者输出,这类算子会触发 SparkContext 提交 Job 作业一行wordcount: sc.textFile("hdfs://master01:900
  • 1
  • 2
  • 3
  • 4
  • 5